
Tables types1.
Routing tables2.
Locality tables3.
Cacheability Table4.

Tables types
From the segments defined in the Mapping table, it is possible to generate 3 types of tables indexed by the VCI
address:

routing table, yielding the target port number for a given address;•
locality table, yielding a boolean indicating whether the address is local;•
Cacheability table, yielding a boolean indicating whether the address is cacheable;•

When the mapping table is created, 4 informations must be defined:

Address size (in bits)•
Address routing table fields sizes (in bits, from the VCI ADDRES MSB bits)•
Index routing table fields sizes (in bits, from the VCI SRCID)•
Cacheability mask•

Segments are registered with the .add() method. Nothing is verified until actual tables are created.

Routing tables
In the general case, we can define hierarchical interconnects, where both initiators and targets are grouped in
subsystems, called clusters. Therefore, each initiator (and each target) is identified by two indexes: a cluster_index,
and a local_index.

In such a case, we must use, local routing tables, global routing tables and locality tables.

We'll suppose we create a Mapping Table with the following code:

MappingTable maptab(32, IntTab(8, 4), IntTab(4, 3), 0x00300000);

For a command packet, the first 8 MSB ADDRES bits must be decoded by the global interconnect using the global
routing table to get the target cluster_index, and the next 4 ADDRESS bits must be decoded by the local
interconnect using a local routing table to get the target local_index.

The locality table is used by the local interconnect to decide wether a command packet is local or not.

For a response packet, the 4 SRCID MSB bits define directly the initiator cluster_index, and the next 3 SRCID bits
define directly the initiator local_index.

The interconnect hierarchy can be seen as a tree. Each interconnect in tree has an unique index, which is an IntTab.
The root interconnect has the empty IntTab() ID, if there are local interconnects, they are numbered
IntTab(n) where n is the local cluster_index. This ID must be the same as the targets and initiator ports it is
connected to on the global interconnect.

In the example above, vgmn is the global interconnect and uses the 8 address MSB bits. lc0 and lc1 use the 4

Routing tables 1

next address bits (but the tables content is generally different for lc0 and lc1).

widths 8 4
bits 31 ? 24 23 ? 20
locality decision lc0, lc1
routing decision vgmn lc0, lc1
When code calls getRoutingTable(index) on a MappingTable, MappingTable scans the list of
registered segments and filters all the segments corresponding to index value.

Let's say we have the following segments:

Name Address Size Target Cacheable
seg0 0x12000000 0x00100000 (0, 0) False
seg1 0x12100000 0x00100000 (0, 1) True
seg2 0x14000000 0x00100000 (1, 0) False
seg3 0x14100000 0x00100000 (1, 1) True
seg4 0x14200000 0x00080000 (1, 2) True
When calling getRoutingTable(IntTab(1)), the resulting local routing table will only contain
information about segments located in cluster 1: seg2, seg3 and seg4.

As the 8 first bits of address are assumed already decoded to select cluster 1, the local routing table only decodes
the next 4 address bits:

Input (bits 23-20) Target ID
0000 0 (seg2)
0001 1 (seg3)
0010 2 (seg4)
0011 Don't Care
0100 Don't Care
... Don't Care
1111 Don't Care
If the routing table creator encounters an impossible configuration in the mapping table, it raises an exception. Let's
suppose we add the following segment:

Name Address Size Target Cacheable
seg5 0x12300000 0x00010000 (1, 3) False
The global routing table should decode the 8 address MSB bits to define the cluster_index, segment seg0 and
segment seg5 have the same MSB bits (0x12), but, they are mapped to different clusters, which is illegal.

Locality tables
Locality tables just tell whether an address is local to a subtree of the network or not.

In the above example, locality table creation for local interconnect 0 (getLocalityTable(IntTab(0)))
would involve:

Name Address Address[31:24] locality
seg0 0x12000000 00010010 0 (local)

Locality tables 2

seg1 0x12100000 00010010 0 (local)
seg2 0x14000000 00010100 1 (foreign)
seg3 0x14100000 00010100 1 (foreign)
seg4 0x14200000 00010100 1 (foreign)
So the locality table will be:

Address[31:24] Is Local
00010010 True
00010100 False
else Don't Care

Cacheability Table
Cacheability tables are a built the same way, but bits used for decoding are selected through the cacheability mask:

take all segments•
extract masked value•
set the cacheability attribute for the value•

We use a cacheability mask of 0x00300000 (bits Address[21:22]

Name Address Masked value Address[21:20] Cacheablility
seg0 0x12000000 0x00000000 00 False
seg1 0x12100000 0x00100000 01 True
seg2 0x14000000 0x00000000 00 False
seg3 0x14100000 0x00100000 01 True
seg4 0x14200000 0x00200000 10 True
We obtain the following cacheability table:

Address[21:20] Cacheability
00 False
01 True
10 True
11 Don't Care
Cacheability Tables take an address, select appropriate bits and yield the Cacheability boolean.

Here again an exception is raised if we encounter an incoherent mapping table.

Assume we add a new segment seg5:

Name Address Size Target Cacheable
seg5 0x20280000 0x00080000 (1, 2) False
Its cacheability entry should be:

Name Address Masked value Address[21:20] Cacheablility
seg5 0x20280000 0x00200000 10 False
The cacheability should be True for segment 4, and False for segment 5, which is not possible.

Cacheability Table 3

