
Tables types1.
Variable tables2.
Command tables

Creating the routing tables1.
Incoherences2.
Creating the locality tables3.

3.

Response tables
Response Routing table1.

4.

Cacheability Table
Incoherences1.

5.

Tables types
Mapping table creates 5 types of tables:

Commands routing table, indexed by addresses, yielding target port number;•
Commands locality table, indexed by addresses, yielding boolean whether an address is local or not;•
Response routing table, indexed by source ID, yielding initiator port number;•
Response routing table, indexed by source ID, yielding boolean whether an index is local or not;•
Cacheability table, indexed by address, yielding whether allowed to cache or not.•

When the mapping table is created, it gets 4 informations:

Address size (in bits)•
Address routing table fields sizes (in bits, from the MSBs)•
Index routing table fields sizes (in bits, from MSB of indexes)•
Cacheability mask•

When the mapping table is created, segments are registered with the .add() method. This does nothing except
registering segments. Nothing is verified until actual tables are created.

We'll suppose we create a Mapping Table with the following code:

MappingTable obj(32, IntTab(8, 4), IntTab(4, 4), 0x00300000);

Variable tables
The two routing table types are unique for each interconnect. The interconnect hierarchy can be seen as a tree. Each
interconnect in tree has an unique ID, which is an IntTab. The root interconnect is has the empty IntTab() ID, if
there are local interconnects, they are numbered IntTab(n) where n is the local cluster ID. This ID must be the
same as the targets and initiator ports it is connected to on the global interconnect.

In this figure, the command routing table is different is lc0, lc1 and vgmn.

Command tables
Routing tables can only use a part of the address to do their job. In the example above, vgmn is the global
interconnect and uses Most-significant-bits of the addresses; lc0 and lc1 use the same bits (but on different
tables), just after the MSBs used by vgmn:

Command tables 1

An address and its decoding fields, if we suppose we created the Mapping Table as before, we have a 32-bit
address:

width: 8 4 (the rest)
bits: 31 ? 24 23 ? 20 19 ? 0
field: vgmn lc0 & lc1 rest of address

Creating the routing tables

When code calls getRoutingTable(index) on a MappingTable, MappingTable scans the list of
registered segments and filters all the segments under index.

Let's say we have the following segments:

Name Address Size Target Cacheable
seg0 0x12000000 0x00100000 (0, 0) False
seg1 0x12100000 0x00100000 (0, 1) True
seg2 0x14000000 0x00100000 (1, 0) False
seg3 0x14100000 0x00100000 (1, 1) True
seg4 0x14200000 0x00080000 (1, 1) True
When calling getRoutingTable(IntTab(1)), the resulting routing table will only contain information
about seg2, seg3 and seg4, which targets (1, ?). As the 8 first bits of address are assumed already decoded,
the table only decodes the next 4 bits:

Input (bits 23-20) Target value
0 0 (seg2)
1 1 (seg3)
2 1 (seg4)
3 .. 0xf unknown

Incoherences

If routing table creation encounters an impossible configuration, it raises an exception. Let's suppose we add the
following segment:

Name Address Size Target Cacheable
seg5 0x20280000 0x00080000 (1, 2) False
Routing table should now be (even if bits 31?24 are 0x20):

Address (bits 23-20) Target value
0 0 (seg2)
1 1 (seg3)
2 1 or 2 (seg4 & seg5)
3 .. 0xf unknown

Creating the locality tables

Locality tables just tell whether an address is local to a subtree of the network or not.

In the above example, locality table creation for local interconnect 0 would be:

Creating the routing tables 2

Name Address Address[31:24] Target cluster
seg0 0x12000000 0x12 0 (local)
seg1 0x12100000 0x12 0 (local)
seg2 0x14000000 0x14 1 (foreign)
seg3 0x14100000 0x14 1 (foreign)
seg4 0x14200000 0x14 1 (foreign)
So the locality table would be:

Address[31:24] Is Local
0x00 .. 0x11 Unknown
0x12 True
0x12 True
0x13 Unknown
0x14 False
0x14 False
0x14 False
0x15 .. 0xff Unknown

Response tables

Response Routing table

The response tables are quite the same as the command ones, except bits used in decoding the source ID field are
equal to the result.

getIdRoutingTable(IntTab(1)) yields:

Srcid (bits 7-4) Target value
0 0
1 1
2 2
... ...
0xf 0xf

Cacheability Table
Cacheability tables are a built the same way, but bits used for decoding are selected through mask passed at
construction:

take all segments•
extract cacheability value•
set the cacheability attribute for the value•

We use a cacheability mask of 0x00300000.

Name Address Masked value Address[21:20] Cacheablility
seg0 0x12000000 0x00000000 0 False
seg1 0x12100000 0x00100000 1 True

Cacheability Table 3

seg2 0x14000000 0x00000000 0 False
seg3 0x14100000 0x00100000 1 True
seg4 0x14200000 0x00200000 2 True
We can deduct the following table:

Address[21:20] Cacheability
0 False
1 True
2 True
3 unknown
In components' code, Cacheability Tables directly take an address, select appropriate bits and yield the Cacheability
boolean.

Incoherences

Again, if we encounter an incoherent value, exception will be raised; let's suppose we add the following segment:

Name Address Size Target Cacheable
seg5 0x20280000 0x00080000 (1, 2) False
Its entry is

Name Address Masked value Address[21:20] Cacheablility
seg5 0x20280000 0x00200000 2 False
Now the table becomes:

Shortened value Cacheability
0 False
1 True
2 True & False
3 unknown
This must not happen

Incoherences 4

