
SocLib Components General Index

VciBlockDevice

1) Functional Description

This VCI component is both a target and an initiator.

It is addressed as a target to be configured for a transfer.•
It is acting as an initiator to do the transfer•

There is only one block device handled by this component, limited to 241 bytes. An IRQ is optionally asserted when
transfer is finished.

This hardware component checks for segmentation violation, and can be used as a default target.

It contains the following memory-mapped registers:

BLOCK_DEVICE_BUFFER Physical address of the buffer in SoC memory•

BLOCK_DEVICE_COUNT Count of blocks to transfer•

BLOCK_DEVICE_LBA Base sector for transfer•

BLOCK_DEVICE_OP Type of operation, writing here initiates the operation.
This register goes back to BLOCK_DEVICE_NOOP when operation is finished. (write only)

•

BLOCK_DEVICE_STATUS State of the transfer. Reading this register while not busy resets its value to
IDLE. Value may be one of

BLOCK_DEVICE_IDLE♦
BLOCK_DEVICE_BUSY♦
BLOCK_DEVICE_READ_SUCCESS♦
BLOCK_DEVICE_WRITE_SUCCESS♦
BLOCK_DEVICE_READ_ERROR♦
BLOCK_DEVICE_WRITE_ERROR♦
BLOCK_DEVICE_ERROR♦

•

BLOCK_DEVICE_IRQ_ENABLE Boolean enabling the IRQ line•

BLOCK_DEVICE_SIZE Number of blocks addressable in the controller (read-only)•

BLOCK_DEVICE_BLOCK_SIZE Block size (in bytes) (read-only)•

The following operations codes are defined:

BLOCK_DEVICE_NOOP Nothing•

BLOCK_DEVICE_READ read()•

BLOCK_DEVICE_WRITE write()•

VciBlockDevice 1

For extensibility issues, you should access this component using globally-defined offsets. You should include file
soclib/block_device.h from your software, it defines BLOCK_DEVICE_COUNT,
BLOCK_DEVICE_READ, ...

Sample code: Please see reference implementation in
source:trunk/soclib/soclib/platform/topcells/caba-vgmn-block_device-mips32el

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/metadata/vci_block_device.sd?

See SoclibCc/VciParameters

Uses('vci_block_device', **vci_parameters)

3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/include/vci_block_device.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/src/vci_block_device.cpp?

•

CABA Constructor parameters

VciBlockDevice(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const std::string &filename, // mapped file, may be a host block device
 const uint32_t block_size = 512); // one-block size

CABA Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci_target : The VCI target port•
soclib::caba::VciInitiator<vci_param> p_vci_initiator : The VCI initiator port•
sc_out<bool> p_irq : Interrupt port•

4) TLM-DT Implementation

The TLM-DT implementation is not yet available.

1) Functional Description 2

