
SocLib Components General Index

VciBlockDevice

1) Functional Description

This VCI component is both a target and an initiator.

It is addressed as a target to be configured for a transfer.•
It is acting as an initiator to do the transfer•

There is only one block device handled by this component. It can be seen as one single file, that has a storage
capacity limited to 241 bytes. An IRQ is optionally asserted when transfer is finished.

This hardware component checks for segmentation violation, and can be used as a default target.

It contains 8 memory-mapped registers:

BLOCK_DEVICE_BUFFER (read/write)•

Physical address of the source (or destination) buffer in SoC memory.

BLOCK_DEVICE_COUNT (read/write)•

Number of blocks to be transfered.

BLOCK_DEVICE_LBA (read/write)•

Logical Base Address (index of the first block in the block device)

BLOCK_DEVICE_OP (write only)•

Type of operation, writing here initiates the operation.This register goes back to BLOCK_DEVICE_NOOP when
operation is finished.

BLOCK_DEVICE_STATUS (read only)•

State of the transfer. Reading this register while not busy resets its value to IDLE, and acknowledge the IRQ. Value
may be one of :

BLOCK_DEVICE_IDLE1.
BLOCK_DEVICE_BUSY2.
BLOCK_DEVICE_READ_SUCCESS3.
BLOCK_DEVICE_WRITE_SUCCESS4.
BLOCK_DEVICE_READ_ERROR5.
BLOCK_DEVICE_WRITE_ERROR6.
BLOCK_DEVICE_ERROR7.

BLOCK_DEVICE_IRQ_ENABLE (read/write)•

Boolean enabling the IRQ line

VciBlockDevice 1

BLOCK_DEVICE_SIZE (read only)•

Number of blocks addressable in the block device

BLOCK_DEVICE_BLOCK_SIZE (read only)•

Block size (in bytes)

The following operations codes are defined:

BLOCK_DEVICE_NOOP Nothing1.
BLOCK_DEVICE_READ from flock device to memory2.
BLOCK_DEVICE_WRITE from memory to block device3.

For extensibility issues, you should access this component using globally-defined offsets. You should include file
soclib/block_device.h from your software, it defines BLOCK_DEVICE_COUNT,
BLOCK_DEVICE_READ, ...

Sample code: Please see reference implementation in
source:trunk/soclib/soclib/platform/topcells/caba-vgmn-block_device-mips32el

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/metadata/vci_block_device.sd?

See SoclibCc/VciParameters

Uses('vci_block_device', **vci_parameters)

3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/include/vci_block_device.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/src/vci_block_device.cpp?

•

CABA Constructor parameters

VciBlockDevice(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const std::string &filename, // mapped file, may be a host block device
 const uint32_t block_size = 512); // one-block size

1) Functional Description 2

CABA Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci_target : The VCI target port•
soclib::caba::VciInitiator<vci_param> p_vci_initiator : The VCI initiator port•
sc_out<bool> p_irq : Interrupt port•

4) TLM-DT Implementation

The TLM-DT implementation is not yet available.

CABA Ports 3

