
SocLib Components General Index

VciDma

1) Functional Description

This VCI component moves data from a source memory buffer to a destination memory buffer. It is both a target
and an initiator.

It is addressed as a target to be configured for a transfer.•
It is acting as an initiator to do the transfer.•

There is only one DMA context handled at a time. An IRQ is optionally asserted when transfer is finished. This
hardware component checks for segmentation violation, and can be used as a default target.

This component has 5 memory-mapped registers :

DMA_SRC (Read / Write)•

It defines the physical address of the source buffer.

DMA_DST (Read / Write)•

It defines the physical address of the destination buffer.

DMA_LEN (Read / Write)•

It defines the length of transfer, in bytes. This register must be written after writing into registers DMA_SRC &
DMA_DST, as the writing into the DMA_LEN register starts the transfer. This register gets back to 0 when transfer
is finished. This register can be used to test the DMA coprocessor status.

DMA_RESET (Write-only)•

Writing any value into this pseudo-register makes a clean re-initialisation of the DMA coprocessor: The on-going
VCI transaction is completed before the coprocessor returns the IDLE state. This write access must be used by the
software ISR to aknowledge the DMA IRQ.

DMA_IRQ_DISABLED (Read / Write)•

A non zero value disables the IRQ line. The reset value is disabled.

For extensibility issues, you should access the DMA using globally-defined offsets.

You should include file soclib/dma.h from your software, it defines DMA_SRC, DMA_DST, DMA_LEN,
DMA_RESET, DMA_IRQ_DISABLED.

Sample code:

#include "soclib/dma.h"

static const volatile void* dma = 0xc0000000;

void * memcpy(void *dst, const void *src, const size_t len)

VciDma 1

{
 soclib_io_set(dma, DMA_DST, dst);
 soclib_io_set(dma, DMA_SRC, src);
 soclib_io_set(dma, DMA_LEN, len);
 while(soclib_io_get(dma, DMA_LEN))
 ;
 return dst;
}

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/infrastructure_component/dma_infrastructure/vci_dma/caba/metadata/vci_dma.sd?

See SoclibCc/VciParameters

Uses('vci_dma')

3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/infrastructure_component/dma_infrastructure/vci_dma/caba/source/include/vci_dma.h?

•

implementation :
source:trunk/soclib/soclib/module/infrastructure_component/dma_infrastructure/vci_dma/caba/source/src/vci_dma.cpp?

•

CABA Constructor parameters

VciDma(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const size_t burst_size); // Number of bytes transfered in a burst

CABA Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci_target : The VCI target port•
soclib::caba::VciInitiator<vci_param> p_vci_initiator : The VCI initiator port•
sc_out<bool> p_irq : Interrupt port•

4) TLM-DT implementation

The TLM-DT implementation is not available yet.

1) Functional Description 2

