SocLib Components General Index

Vcilcu Functional Description

This VCI target is a memory mapped peripheral implementing a vectorized interrupt controller. It can concentrate
up to 32 independent interrupt lines p_irq_in[i] to a single p_irq interrupt line.

The active state is high, and the output interrupt is the logical OR of all input interrupts. Each input interrupt can be
individually masked through an internal register.

This component can be addressed to return the index of the highest priority active interrupt p_irq_[i]. The priority
scheme is fixed : The lower indexes have the highest priority.

This hardware component checks for segmentation violation, and can be used as a default target.

Memory region layout

This component contains 5 memory mapped registers:
® TCU_INT Each bit in this register reflects the state of the corresponding interrupt line. This is read-only.

e TCU_MASK Each bit in this register reflects the state of the enable for the corresponding interrupt line. This
is read-only.

e TCU_MASK_SET Each bit set in the written word will be set in the ICU MASK. (ICU_MASK =
ICU_MASK | written_data). This is write-only.

e TCU_MASK_CLEAR Each bit set in the written word will be reset in the ICU MASK. (ICU_MASK =
ICU_MASK & ~written_data). This is write-only.

® TCU_IT_VECTOR This register gives the number of the highest-priority active interrupt. If no interrupt is
active, (-1) is returned. This is read-only.

Component usage

For extensibility issues, you should access your ICU using globally-defined offsets.

You should include file source:trunk/soclib/include/soclib/icu.h from your software, it defines ICU_INT,
ICU_MASK, ICU_MASK_SET, ICU_MASK_CLEAR, ICU_IT_VECTOR.

Sample code:

#include "soclib/icu.h"

static const volatile void* timer_address = 0xc0000000;

static icu_test (const size_t icu_no)

{
// Getting / setting interrupt mask
uint32_t current_interrupt_mask = soclib_io_get (timer_address, ICU_SPAN*icu_no + ICU_MASK
// Enabling IRQ #5

soclib_io_set (timer_address, ICU_SPAN*icu_no + ICU_MASK_SET, 1<<5);

Component usage 1

// Disabling IRQ #0
soclib_io_set (timer_address, ICU_SPAN*icu_no + ICU_MASK_CLEAR, 1<<0);

// When interrupt is raised, you may do:

int irqg_to_serve = soclib_io_get (timer_address, ICU_SPAN*icu_no + ICU_IT_VECTOR);

// This should be equivalent to (see man 3 ffs)

int irg_to_serve = ffs(soclib_io_get(timer_address, ICU_SPAN*icu_no + ICU_IT_VECTOR)
& soclib_io_get (timer_address, ICU_SPAN*icu_no + ICU_MASK));

(add -I/path/to/soclib/include to your compilation command-line)

Component definition

Available in source:trunk/soclib/desc/soclib/vci_icu.sd

Usage

Vcilcu has no other parameter than VCI ones, it may be used like others, see SoclibCc/VciParameters

Uses('vci_icu', **vci_parameters)

Vcilcu CABA Implementation

The caba implementation is in

e source:trunk/soclib/systemc/include/caba/target/vci_icu.h
e source:trunk/soclib/systemc/src/caba/target/vci_icu.cc

Template parameters:

® The VCI parameters

Constructor parameters

VciIcu(
sc_module_name name, // Component Name
const soclib::common::InTab &index, // Target index
const soclib::common: :MappingTable &mt, // Mapping Table
size_t nirqg); // Number of input interrupts

Ports

¢ sc_in<bool> p_resetn : Global system reset

® sc_in<bool> p_clk : Global system clock

e soclib::caba::VciTarget<vci_param> p_vci : VCI port
® sc_out<bool> p_irq : Output interrupt port

® sc_in<bool> p_irq_in[] : Input interrupts ports array

Vcilcu CABA Implementation 2

