
SocLib Components General Index

VciIcu Functional Description
This VCI target is a memory mapped peripheral implementing a vectorized interrupt controller. It can concentrate
up to 32 independent interrupt lines p_irq_in[i] to a single p_irq interrupt line.

The active state is high, and the output interrupt is the logical OR of all input interrupts. Each input interrupt can be
individually masked through an internal register.

This component can be addressed to return the index of the highest priority active interrupt p_irq_[i]. The priority
scheme is fixed : The lower indexes have the highest priority.

This hardware component checks for segmentation violation, and can be used as a default target.

Memory region layout
This component contains 5 memory mapped registers:

ICU_INT: ADDRESS[4:0] = 0x0 Each bit in this register reflects the state of the corresponding interrupt
line. This is read-only.

•

ICU_MASK: ADDRESS[4:0] = 0x4 Each bit in this register reflects the state of the enable for the
corresponding interrupt line. This is read-only.

•

ICU_MASK_SET: ADDRESS[4:0] = 0x8 Each bit set in the written word will be set in the ICU MASK.
(ICU_MASK = ICU_MASK | written_data). This is write-only.

•

ICU_MASK_CLEAR: ADDRESS[4:0] = 0xc Each bit set in the written word will be reset in the ICU
MASK. (ICU_MASK = ICU_MASK & ~written_data). This is write-only.

•

ICU_IT_VECTOR: ADDRESS[4:0] = 0x10 This register gives the number of the highest-priority active
interrupt. If no interrupt is active, (-1) is returned. This is read-only.

•

Component usage
For extensibility issues, you should access your ICU using globally-defined offsets.

You should include file source:trunk/soclib/include/soclib/icu.h from your software, it defines ICU_INT,
ICU_MASK, ICU_MASK_SET, ICU_MASK_CLEAR, ICU_IT_VECTOR.

Sample code:

#include "soclib/icu.h"

static const volatile void* timer_address = 0xc0000000;

static icu_test(const size_t icu_no)
{
 volatile int *icu = ((int*)icu_address) + timer_no*ICU_SPAN;

 // Getting / setting interrupt mask
 uint32_t current_interrupt_mask = icu[ICU_MASK];

Component usage 1

 // Enabling IRQ #5
 icu[ICU_MASK_SET] = 0x20;
 // Disabling IRQ #0
 icu[ICU_MASK_CLEAR] = 0x1;

 // When interrupt is raised, you may do:
 int irq_to_serve = icu[ICU_IT_VECTOR];
 // This should be equivalent to (see man 3 ffs)
 int irq_to_serve = ffs(icu[ICU_IT_VECTOR] & icu[ICU_MASK]);
}

(add -I/path/to/soclib/include to your compilation command-line)

VciIcu CABA Implementation
The caba implementation is in

source:trunk/soclib/systemc/include/caba/target/vci_icu.h•
source:trunk/soclib/systemc/src/caba/target/vci_icu.cc•

Template parameters:

The VCI parameters•

Constructor parameters
VciIcu(
 sc_module_name name, // Component Name
 const soclib::common::InTab &index, // Target index
 const soclib::common::MappingTable &mt, // Mapping Table
 size_t nirq); // Number of input interrupts

Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci : VCI port•
sc_out<bool> p_irq : Output interrupt port•
sc_in<bool> *p_irq_in : Pointer to the input interrupts ports table•

VciIcu CABA Implementation 2

