
SocLib Components General Index

VciMultiAhci

1) Functional Description

This component emulates a multi-channels disk controller with VCI interface. Each channel[k] can access a
different physical disk, modeled as a different file[k] belonging to the host system, and containing a complete disk
image. Each channel[k] can perform data transfers between file[k] and a buffer in the physical memory of the
virtual system. he number of supported channels, the file name(s), the VCI burst size, and the block size are
hardware parameters,defined as constructors parameters. The number of channels cannot be larger than 8. The burst
size must be a power of 2 between 8 and 64 bytes. The block size must be a power of 2 between 128 and 4096
bytes.

According to the AHCI specification, each channel[k] controller uses a private Command List that is handled as a
software FIFO. For each channel[k], the Command List can register up to 32 read or write commands, that are
handled in pseudo-parallelism by the channel controller. This VCI component has a DMA capability, and use it to
access the Command List and to transfer the data to or from memory.

On the VCI side, it supports both 32 bits and 64 bits data words, and up to 64 bits address width.

For each channel, a single IRQ[k] can be (optionally) asserted as soon as at list one command in the Command List
is completed. WARNING: the IRQ[k] is associated to a specific channel, but not to a specific command.

This hardware component checks for segmentation violation, and can be used as a default target.

2) Addressable registers

Each channel[k] contains seven 32 bits registers:

HBA (read/write)•

Physical address of the source (or destination) buffer in SoC memory.

BLOCK_DEVICE_COUNT (read/write)•

Number of blocks to be transfered.

BLOCK_DEVICE_LBA (read/write)•

Logical Base Address (index of the first block in the block device)

BLOCK_DEVICE_OP (write only)•

Type of operation, writing here initiates the operation.This register goes back to BLOCK_DEVICE_NOOP when
operation is finished. The following operations codes are defined:

BLOCK_DEVICE_NOOP No operation
BLOCK_DEVICE_READ Transfer from block device to memory
BLOCK_DEVICE_WRITE Transfer from memory to block device

VciMultiAhci 1

BLOCK_DEVICE_STATUS (read only)•

State of the transfer. Reading this register while not busy resets its value to IDLE, and acknowledge the IRQ. Value
may be one of :

BLOCK_DEVICE_IDLE

BLOCK_DEVICE_BUSY

BLOCK_DEVICE_READ_SUCCESS

BLOCK_DEVICE_WRITE_SUCCESS

BLOCK_DEVICE_READ_ERROR

BLOCK_DEVICE_WRITE_ERROR

BLOCK_DEVICE_IRQ_ENABLE (read/write)•

Boolean enabling the IRQ line

BLOCK_DEVICE_SIZE (read only)•

Number of blocks addressable in the block device

BLOCK_DEVICE_BLOCK_SIZE (read only)•

Block size (in bytes)

For extensibility issues, you should access this component using globally-defined offsets. You should include file
soclib/block_device.h from your software, it defines BLOCK_DEVICE_COUNT,
BLOCK_DEVICE_READ, ...

Sample code: Please see reference implementation in
source:trunk/soclib/soclib/platform/topcells/caba-vgmn-block_device-mips32el

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/metadata/vci_block_device.sd?

See SoclibCc/VciParameters

Uses('vci_block_device', **vci_parameters)

3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/include/vci_block_device.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/src/vci_block_device.cpp?

•

2) Addressable registers 2

CABA Constructor parameters

VciBlockDevice(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const std::string &filename, // mapped file, may be a host block device
 const uint32_t block_size = 512, // block size in bytes
 const uint32_t latency = 0); // initial access time (number of cycles)

CABA Ports

p_resetn : Global system reset•
p_clk : Global system clock•
p_vci_target : The VCI target port•
p_vci_initiator : The VCI initiator port•
p_irq : Interrupt port•

4) TLM-DT Implementation

TLM-DT sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/tlmdt/source/include/vci_block_device.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/tlmdt/source/src/vci_block_device.cpp?

•

TLM-DT Constructor parameters

VciBlockDevice(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const std::string &filename, // mapped file, may be a host block device
 const uint32_t block_size = 512, // block size in bytes
 const uint32_t latency = 0); // initial access time (number of cycles)

TLM-DT Ports

p_vci_target : The VCI target port•
p_vci_initiator : The VCI initiator port•
p_irq : Interrupt port•

CABA Constructor parameters 3

