
SocLib Components General Index

VciMultiAhci

1) Functional Description

This component emulates a multi-channels disk controller respecting the AHCI standard. Each channel[k] can
access a different physical disk, modeled as a file (one file per channel) belonging to the host system, and
containing a complete disk image. Each channel[k] can perform data transfers between file[k] and a buffer in the
physical memory of the virtual prototype. The number of supported channels, the file name(s), the VCI burst size,
and the block size are hardware parameters, defined as constructor parameters. The number of channels cannot be
larger than 8. The burst size must be a power of 2 between 8 and 64 bytes. The block size must be a power of 2
between 128 and 4096 bytes.

According to the AHCI specification, each channel[k] controller uses a private Command List that is handled as a
software FIFO. For each channel[k], the associated Command List can register up to 32 read or write commands,
that are handled in pseudo-parallelism by a dedicated channel controller.

This VCI component has a DMA capability, and use it to access both the Command List and to transfer the data to
or from memory.

On the VCI side, it supports both 32 bits and 64 bits data words, and up to 64 bits address width.

For each channel[k], a single IRQ[k] can be (optionally) asserted as soon as at list one command in the Command
List is completed. WARNING: the IRQ[k] is associated to a specific channel, but not to a specific command.

This hardware component checks for segmentation violation, and can be used as a default target.

2) Command List

For each channel, the VciMultiAhci driver must use a software FIFO to register a command: The Command
Descriptor array (32 entries) define the Command List. Each Command Descriptor occupies 16 bytes, and must be
aligned on a 16 bytes boundary. It contains mainly the physical address of the associated Command Table. A
command Descriptor is defined by the following C structure:

typedef struct hba_cmd_desc_s // size = 16 bytes
{
 unsigned char flag[2]; // WRITE when bit 6 of flag[0] is set
 unsigned char prdtl[2]; // Number of buffers
 unsigned int prdbc; // Number of bytes actually transfered
 unsigned int ctba; // Command Table base address 32 LSB bits
 unsigned int ctbau; // Command Table base address 32 MSB bits
} hba_cmd_desc_t;

3) Command Table

There is one Command Table for each Command descriptor. For a given command, there is one single LBA (Logic
Bloc Address) on the block device, coded on 48 bits, but the source (or destination) memory buffer can be split in a
variable number of contiguous buffers. Therefore, the Command Table contains two parts: a fixed size Header,
defining the LBA, and an array of buffer descriptors containing up to 248 buffer descriptors. A Command Table
occupies 4 Kbytes, and must be aligned on a 4 Kbytes boundary. It is defined by the following C structures:

typedef struct hba_cmd_table_s // size = 4 Kbytes

VciMultiAhci 1

{

 hba_cmd_header_t header; // contains LBA
 hba_cmd_buffer_t buffer[248]; // 248 buffers max

} hba_cmd_table_t;

typedef struct hba_cmd_header_s // size = 128 bytes
{
 unsigned int res0; // reserved
 unsigned char lba0; // LBA 7:0
 unsigned char lba1; // LBA 15:8
 unsigned char lba2; // LBA 23:16
 unsigned char res1; // reserved
 unsigned char lba3; // LBA 31:24
 unsigned char lba4; // LBA 39:32
 unsigned char lba5; // LBA 47:40
 unsigned char res2; // reserved
 unsigned int res[29]; // reserved
} hba_cmd_header_t;

typedef struct hba_cmd_buffer_s // size = 16 bytes
{
 unsigned int dba; // Buffer base address 32 LSB bits
 unsigned int dbau; // Buffer base address 32 MSB bits
 unsigned int res0; // reserved
 unsigned int dbc; // Buffer byte count

} hba_cmd_buffer_t;

4) Addressable registers

Each channel[k] contains six 32 bits read/write registers:

HBA_PXCLB•

32 LSB bits of the Command List physical base address. This address must be aligned on a 16 bytes boundary.

HBA_PXCLBU•

32 MSB bits of the Command List array physical address.

HBA_PXIS•

Channel status, used for error reporting.

31 30 29 28.....24 23..........8 7.....1 0
-- R -- CMD_ID BUFFER_ID ------- D

Bit[0] : set by hardware when at least one command has been completed. Bit[30] : set by hardware
when an error has been detected in a command. Bit[28:24] : index of the faulty command in
command list (set by the hardware). Bit[23:8] : index of the faulty buffer in the faulty command
(set by the hardware).

When an error is detected for a command, the R bit is set, the channel FSM stops immediately, without handling
the remaining commands in the command list, and keep blocked, waiting for a software reset on this PXIS register.
Any write access to this register reset all bits to 0, whatever the VCI WDATA value.

HBA_PXIE•

3) Command Table 2

This register enables and disables the IRQ reporting the completion (success or error) of the commands for a given
channel. Only 2 bits are used:

31 30 29 1 0
-- R ------------------------------------ D

Bit 0 : when set, an IRQ is generated when bit0 of AHCI_PXIS is set. Bit 30 : when set, an IRQ is
generated when bit30 of AHCI_PXIS is set.

HBA_PXCMD•

Boolean : Writing a non zero value activates the polling of the Command List. Writing a zero value makes a soft
reset on PXCI, PXIS, PXIE, and PXCMD registers.

HBA_PXCI•

Bit-vector, one bit per command in the Command List. These bits are handled as 32 set/reset flip-flops: set by
software when a command ha been posted in Command List / reset by hardware when the command is completed.
A write command on this register makes a OR between the VCI WDATA field and the current value of the register.

For extensibility issues, the software drivers must access this component using the mnemonics defined here?.

Even if there is only six registers per channel, each channel sub-segment occupies 4K bytes, and the HBA segment
must be aligned on a 32 Kbytes boundary.

5) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_multi_ahci/caba/metadata/vci_multi_ahci.sd?

6) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_multi_ahci/caba/source/include/vci_multi_ahci.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_multi_ahci/caba/source/src/vci_multi_ahci.cpp?

•

CABA Constructor parameters

VciBlockDevice(
 sc_module_name name, // Component Name
 const soclib::common::MappingTable &mt, // MappingTable
 const soclib::common::IntTab &srcid, // Initiator index
 const soclib::common::IntTab &tgtid, // Target index
 const std::vector<std::string> &filenames, // vector of filenames (one per channel)
 const uint32_t block_size = 512, // block size in bytes
 const uint32_t latency = 0); // initial access time (number of cycles)

CABA Ports

p_resetn : Global system reset•
p_clk : Global system clock•
p_vci_target : The VCI target port•

4) Addressable registers 3

p_vci_initiator : The VCI initiator port•
p_channel_irq[] : Array of interrupt ports (one per channel)•

7) TLM-DT Implementation

Not available yet.

CABA Ports 4

