
SocLib Components General Index

VciMultiAhci

1) Functional Description

This component emulates a multi-channels disk controller with VCI interface. Each channel[k] can access a
different physical disk, modeled as a different file[k] belonging to the host system, and containing a complete disk
image. Each channel[k] can perform data transfers between file[k] and a buffer in the physical memory of the
virtual system. The number of supported channels, the file name(s), the VCI burst size, and the block size are
hardware parameters, defined as constructor parameters. The number of channels cannot be larger than 8. The burst
size must be a power of 2 between 8 and 64 bytes. The block size must be a power of 2 between 128 and 4096
bytes.

According to the AHCI specification, each channel[k] controller uses a private Command List that is handled as a
software FIFO. For each channel[k], the Command List can register up to 32 read or write commands, that are
handled in pseudo-parallelism by the channel controller. This VCI component has a DMA capability, and use it to
access both the Command List and to transfer the data to or from memory.

On the VCI side, it supports both 32 bits and 64 bits data words, and up to 64 bits address width.

For each channel, a single IRQ[k] can be (optionally) asserted as soon as at list one command in the Command List
is completed. WARNING: the IRQ[k] is associated to a specific channel, but not to a specific command.

This hardware component checks for segmentation violation, and can be used as a default target.

2) Command List

For each channel, the VciMultiAhci driver must use a software FIFO to register a command: The Command
Descriptor array (32 entries) define the Command List. Each Command Descriptor occupies 16 bytes, and contains
mainly the physical address of the associated Command Table. A command Descriptor is defined by the following
C structure:

typedef struct hba_cmd_desc_s  // size = 16 bytes
{
    unsigned char       flag[2];        // WRITE when bit 6 of flag[0] is set 
    unsigned char       prdtl[2];       // Number of buffers
    unsigned int        prdbc;          // Number of bytes actually transfered
    unsigned int        ctba;           // Command Table base address 32 LSB bits
    unsigned int        ctbau;          // Command Table base address 32 MSB bits
} hba_cmd_desc_t;

3) Command Table

There is one Command Table for each Command descriptor. For a given command, there is one single LBA (Logic
Bloc Address) on the block device, coded on 48 bits, but the source (or destination) memory buffer can be split in a
variable number of contiguous buffers. Therefore, the Command Table contains two parts: a fixed size Header,
defining the LBA, and an array of buffer descriptors containing up to 248 buffer descriptors. A Command Table
occupies 4 Kbytes, and is defined by the following C structures:

typedef struct hba_cmd_table_s  // size = 4 Kbytes
{

VciMultiAhci 1



    hba_cmd_header_t   header;      // contains LBA
    hba_cmd_buffer_t   buffer[248]; // 248 buffers max

} hba_cmd_table_t;

typedef struct hba_cmd_header_s // size = 128 bytes
{
    unsigned int       res0;        // reserved 
    unsigned char      lba0;        // LBA 7:0
    unsigned char      lba1;        // LBA 15:8
    unsigned char      lba2;        // LBA 23:16
    unsigned char      res1;        // reserved
    unsigned char      lba3;        // LBA 31:24
    unsigned char      lba4;        // LBA 39:32
    unsigned char      lba5;        // LBA 47:40
    unsigned char      res2;        // reserved
    unsigned int       res[29];     // reserved 
} hba_cmd_header_t;

typedef struct hba_cmd_buffer_s // size = 16 bytes
{
    unsigned int       dba;         // Buffer base address 32 LSB bits
    unsigned int       dbau;        // Buffer base address 32 MSB bits
    unsigned int       res0;        // reserved
    unsigned int       dbc;         // Buffer byte count

} hba_cmd_buffer_t;

4) Addressable registers

Each channel[k] contains six 32 bits read/write registers:

HBA_PXCLB• 

32 LSB bits of the Command List physical base address. This address must be aligned on a 16 bytes boundary.

HBA_PXCLBU• 

32 MSB bits of the Command List array physical address.

HBA_PXIS• 

Channel status, used for error reporting.

31 30 29 28 24 23 ... 8 7 ... 1 0

HBA_PXIE• 

Intcommanderrupt enable.

HBA_PXCMD• 

Boolean : running when non zero

HBA_PXCI• 

Bit-vector, one bit per command in the Command List. These bits are handled as 32 set/reset flip-flops: set by
software when a command ha been posted in Command List / reset by hardware when the command is completed.

3) Command Table 2



BLOCK_DEVICE_OP (write only)• 

Type of operation, writing here initiates the operation.This register goes back to BLOCK_DEVICE_NOOP when
operation is finished. The following operations codes are defined:

BLOCK_DEVICE_NOOP No operation
BLOCK_DEVICE_READ Transfer from block device to memory
BLOCK_DEVICE_WRITE Transfer from memory to block device

BLOCK_DEVICE_STATUS (read only)• 

State of the transfer. Reading this register while not busy resets its value to IDLE, and acknowledge the IRQ. Value
may be one of :

BLOCK_DEVICE_IDLE

BLOCK_DEVICE_BUSY

BLOCK_DEVICE_READ_SUCCESS

BLOCK_DEVICE_WRITE_SUCCESS

BLOCK_DEVICE_READ_ERROR

BLOCK_DEVICE_WRITE_ERROR

BLOCK_DEVICE_IRQ_ENABLE (read/write)• 

Boolean enabling the IRQ line

BLOCK_DEVICE_SIZE (read only)• 

Number of blocks addressable in the block device

BLOCK_DEVICE_BLOCK_SIZE (read only)• 

Block size (in bytes)

For extensibility issues, you should access this component using globally-defined offsets. You should include file
soclib/block_device.h from your software, it defines BLOCK_DEVICE_COUNT,
BLOCK_DEVICE_READ, ...

Sample code: Please see reference implementation in
source:trunk/soclib/soclib/platform/topcells/caba-vgmn-block_device-mips32el

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/metadata/vci_block_device.sd?

See SoclibCc/VciParameters

Uses( 'vci_block_device', **vci_parameters )

4) Addressable registers 3



3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/include/vci_block_device.h?

• 

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/caba/source/src/vci_block_device.cpp?

• 

CABA Constructor parameters

VciBlockDevice(
     sc_module_name name,   //  Component Name
     const soclib::common::MappingTable &mt, // MappingTable
     const soclib::common::IntTab &srcid,    // Initiator index
     const soclib::common::IntTab &tgtid,    // Target index
     const std::string &filename, // mapped file, may be a host block device
     const uint32_t block_size = 512, // block size in bytes
     const uint32_t latency = 0);  // initial access time (number of cycles)

CABA Ports

p_resetn : Global system reset• 
p_clk : Global system clock• 
p_vci_target : The VCI target port• 
p_vci_initiator : The VCI initiator port• 
p_irq : Interrupt port• 

4) TLM-DT Implementation

TLM-DT sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/tlmdt/source/include/vci_block_device.h?

• 

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_block_device/tlmdt/source/src/vci_block_device.cpp?

• 

TLM-DT Constructor parameters

VciBlockDevice(
     sc_module_name name,   //  Component Name
     const soclib::common::MappingTable &mt, // MappingTable
     const soclib::common::IntTab &srcid,    // Initiator index
     const soclib::common::IntTab &tgtid,    // Target index
     const std::string &filename, // mapped file, may be a host block device
     const uint32_t block_size = 512, // block size in bytes
     const uint32_t latency = 0);  // initial access time (number of cycles)

TLM-DT Ports

p_vci_target : The VCI target port• 
p_vci_initiator : The VCI initiator port• 
p_irq : Interrupt port• 

3) CABA Implementation 4


