SocLib Components General Index
VciMultilcu

1) Functional Description

This VCI target is a multi-channels memory mapped peripheral implementing a vectorized interrupt controller. It
can concentrate up to 32 input interrupts p_irq_in[i] to 8 output interrupts p_irq_out[K].

It behaves as 8 independant Vcilcu components, and can be used in a multi-processors architecture to dispatch the
peripheral interrupts to 8 processors, using the software programmable registers ICU_MASK[K].

There is one independant set of registers for each channel [k] (i.e. for each output interrupt) and each input interrupt
can be individually masked through the programmable register ICU_MASKJk].

In principle, the values contained in the ICU_MASK]JKk] registers must be non-overlapping, because a given input
interrupt should be routed to only one processor.

For a given channel, the priority scheme is fixed : The lower indexes have the highest priority.

For each channel [k], the ICU_IT_VECTORIKk] register can be addressed to return the index of the highest priority,
non masked, active interrupt p_irq_[i].

This hardware component checks for segmentation violation, and can be used as a default target.
For each channel [k] there is five addressable registers:

® TCU_INT [k] Each bit in this register reflects the state of the corresponding input interrupt line. This is
read-only.

e TCU_MASK [k] Each bit in this register reflects the state of the enable for the corresponding interrupt line.
This is read-only.

e TCU_MASK_SET [k] Each bit set in the written word will be set in the ICU MASK. (ICU_MASK =
ICU_MASK | written_data). This is write-only.

e TCU_MASK_CLEAR [k] Each bit set in the written word will be reset in the ICU MASK. (ICU_MASK =
ICU_MASK & ~written_data). This is write-only.

® TCU_IT_VECTOR[k] This register gives the index of the highest-priority active interrupt. If no interrupt
is active, (-1) is returned. This is read-only.

For extensibility issues, you should access your ICU using globally-defined offsets.

You should include file soclib/icu.h from your software, it defines ICU_INT, ICU_MASK,
ICU_MASK_SET, ICU_MASK_CLEAR, ICU_IT_VECTOR.

2) Component definition & usage

source:trunk/soclib/module/infrastructure_component/interrupt_infrastructure/vci_multi_icu/caba/metadata/vci_multi_icu.sd

Uses('vci_multi_dicu')

VciMultilcu 1

3) CABA Implementation
CABA sources

e interface :

source:trunk/soclib/soclib/module/infrastructure component/interrupt infrastructure/vei multi icu/caba/source/inclu
¢ implementation :

source:trunk/soclib/soclib/module/infrastructure component/interrupt infrastructure/vei multi icu/caba/source/src/v

CABA Constructor parameters

VciMultiIcu (
sc_module_name name, // Component Name
const soclib::common::InTab &index, // Target index
const soclib::common: :MappingTable &mt, // Mapping Table

size_t nirg in, // Number of input interrupts
size_t nirg out); // Number of channels (output interrupts)
CABA Ports

¢ p_resetn : Global system reset

¢ p_clk : Global system clock

® p_vci : VCI target port

e p_irq_in[i] : Up to 32 input IRQ ports

e p_irq_out[k] : Up to 8 output IRQ ports

3) CABA Implementation 2

