
SocLib Components General Index

VciMultiNic

1) Functional Description

The VciMultiNic component, is a multi-channels, GMII compliant, network controller for Gigabit Ethernet
network.

It can support a throughput of 1 Gigabit/s, as long as the system clock frequency is larger or equal to the GMII
clock frequency (ie 125 MHz).

Each channel defines a different destination MAC address, and each channel uses private RX and TX buffers. The
number of channels is a constructor parameter, and cannot be larger than 8.

On the VCI side, this component makes the assumption that the VCI RDATA & WDATA fields have 32 bits.

Regarding the GMII physical interface, this simulation model supports three modes of operation, defined by a
constructor parameter:

NIC_MODE_FILE: Both the RX packets stream an the TX packets stream are read/written from/to
dedicated files "nic_rx_file.txt" and "nic_tx_dile.txt", stored in the same directory as the top.cpp file.

•

NIC_MODE_SYNTHESIS: The TX packet stream is still written to the "nic_tx_file.txt" file, but the RX
packet stream is synthesised. The packet length (between 64 and 1538 bytes) and the source MAC address
(8 possible values) are pseudo-random numbers.

•

NIC_MODE_TAP: The TX and RX packet streams are send and received to and from the physical
network controller of the workstation running the simulation.

•

It is a VCI target with no DMA capability : All data transfers must be performed by software, or by the external
VciChbufDma component.

The data transfer unit between software and the NIC is a fixed-size container, containing an integer number of
packets. A container is a 4 Kbytes buffer (1024 words of 32 bits).

The first 34 words define the fixed-format container header :

word0 NB_WORDS NB_PACKETS
word1 PLEN[0] PLEN[1]
...
word33 PLEN[64] PLEN[65]

NB_PACKETS is the actual number of packets in the container.•
NB_WORDS is the number of useful words in the container.•
PLEN[i] is the number of bytes for packet[i].•

The packets are stored in the (1024 - 34) following words, The max number of packets in a container is 66 packets,
and the packets are word-aligned.

Each channel contains two RX containers and two TX containers. The two RX containers are organized as a
RX_CHBUF, and the two TX containers are organized as a TX_CHBUF.

VciMultiNic 1

A CHBUF is a set of M chained buffers, M status variables, plus a CHBUF_descriptor. A CHBUF_descriptor is an
array of M buffer_descriptors. The status LSB is a boolean which is true when the buffer is full and false when it is
empty. A buffer_descriptor contains the buffer base address and the buffer status base address PADDR (in the
physical address space). Both the addresses are 64 bytes aligned and they have the same address extension
(bits[43:32]).

In order to simplify the L2/L3 cache coherence, each status variable is implemented as a 64 bytes record, even if
only the last bit contain useful information. A buffer_descriptor occupies 64 bits: the 12 MSB bits contain the
common extension of the buffer address and the buffer status address, the 26 following bits contain the bits[31:6] of
the buffer address and the 26 LSB bits contain the bits[31:6] of the buffer status address.

This CHBUF organization allows the TX or RX buffers to be accessed by the VciChbufDma engine.

2) Addressable registers and buffers

In a virtualized environment each channel segment will be mapped in the address space of a different virtual
machine. Each channel takes a segment of 32 Kbytes in the address space, to simplify the address decoding, but
only 20K bytes are used.

The first 4 Kbytes contain the RX_0 container data•
The next 4 Kbytes contain the RX_1 container data•
The next 4 Kbytes contain the TX_0 container data•
The next 4 Kbytes contain the TX_1 container data•
The next 4 Kbytes contain the channel addressable registers:•

NIC_RX_STS_0 RX_0 status (full or empty) read/write
NIC_RX_STS_1 RX_1 status (full or empty) read/write
NIC_TX_STS_0 TX_0 status (full or empty) read/write
NIC_TX_STS_1 TX_1 status (full or empty) read/write
NIC_RX_DESC_LO_0 RX_0 descriptor low word read/write
NIC_RX_DESC_HI_0 RX_0 descriptor high word read/write
NIC_RX_DESC_LO_1 RX_1 descriptor low word read/write
NIC_RX_DESC_HI_1 RX_1 descriptor high word read/write
NIC_TX_DESC_LO_0 TX_0 descriptor low word read/write
NIC_TX_DESC_HI_0 TX_0 descriptor high word read/write
NIC_TX_DESC_LO_1 TX_1 descriptor low word read/write
NIC_TX_DESC_HI_1 TX_1 descriptor high word read/write
NIC_MAC_4 MAC address 32 LSB bits read_only
NIC_MAC_2 MAC address 16 MSB bits read_only
NIC_RX_RUN RX channel activated write_only
NIC_TX_RUN TX channel activated write_only
On top of the channels segments is the hypervisor segment, taking 4 Kbytes, and containing the global
configuration registers: (all read/write). In a virtualized environment, the corresponding page should not be mapped
in the virtual machines address spaces, as it should not accessed by the virtual machines.

Register name function Reset value
NIC_G_VIS bitfield / bit N = 0 -> channel N is disabled all inactive
NIC_G_ON NIC active if non zero (inactive at reset) inactive

1) Functional Description 2

NIC_G_BC_ENABLE boolean / broadcast enabled if true disabled
NIC_G_TDM_ENABLE boolean / enable TDM dor TX if true disabled
NIC_G_TDM_PERIOD value of TDM time slot
NIC_G_PYPASS_ENABLE boolean / enable bypass for TX if true enabled
NIC_G_MAC_4[8] default MAC address 32 LSB bits for channel[i]
NIC_G_MAC_2[8] default MAC address 16 LSB bits for channel[i]
The Hypervisor segment contains also various event counters for statistics (read/write)

NIC_G_NPKT_RX_G2S_RECEIVED number of packets received on GMII RX port
NIC_G_NPKT_RX_G2S_DISCARDED number of RX packets discarded by RX_G2S FSM

NIC_G_NPKT_RX_DES_SUCCESS number of RX packets transmited by RX_DES FSM
 NIC_G_NPKT_RX_DES_TOO_SMALL number of discarded too small RX packets
NIC_G_NPKT_RX_DES_TOO_BIG number of discarded too big RX packets
 NIC_G_NPKT_RX_DES_MFIFO_FULL number of discarded RX packets for fifo full
NIC_G_NPKT_RX_DES_CRC_FAIL number of discarded RX packets for checksum

 NIC_G_NPKT_RX_DISPATCH_RECEIVED number of packets received by RX_DISPATCH FSM
 NIC_G_NPKT_RX_DISPATCH_BROADCAST number of broadcast RX packets received
 NIC_G_NPKT_RX_DISPATCH_DST_FAIL number of discarded RX packets for DST MAC
NIC_G_NPKT_RX_DISPATCH_CH_FULL number of discarded RX packets for channel full

NIC_G_NPKT_TX_DISPATCH_RECEIVED number of packets received by TX_DISPATCH FSM
 NIC_G_NPKT_TX_DISPATCH_TOO_SMALL number of discarded too small TX packets
 NIC_G_NPKT_TX_DISPATCH_TOO_BIG number of discarded too big TX packets
NIC_G_NPKT_TX_DISPATCH_SRC_FAIL number of discarded TX packets because SRC MAC
 NIC_G_NPKT_TX_DISPATCH_BROADCAST number of broadcast TX packets received
 NIC_G_NPKT_TX_DISPATCH_BYPASS number of bypassed TX->RX packets
 NIC_G_NPKT_TX_DISPATCH_TRANSMIT number of transmit TX packets
For extensibility issues, you should access all these registers using the globally-defined offsets in file

source:trunk/soclib/soclib/module/connectivity_component/vci_multi_nic/include/soclib/multi_nic.h?

This hardware component checks for segmentation violation, and can be used as a default target.

3) Component definition & usage

source:trunk/soclib/soclib/module/connectivity_component/vci_multi_nic/caba/metadata/vci_multi_nic.sd?

Uses('vci_multi_nic')

4) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/connectivity_component/vci_multi_nic/caba/source/include/vci_multi_nic.h?

•

implementation :
source:trunk/soclib/soclib/module/connectivity_component/vci_multi_nic/caba/source/src/vci_multi_nic.cpp?

•

2) Addressable registers and buffers 3

CABA Constructor parameters

VciMultiNic(
 sc_module_name name, // Component Name
 const soclib::common::IntTab &tgtid, // Target index
 const soclib::common::MappingTable &mt, // MappingTable
 const size_t channels, // Number of channels
 const uint32_t mac4, // MAC address 32 LSB bits
 const uint32_t mac2, // MAC address 16 MSB bits
 const int mode, // GMII physical interface modeling
 const uint32_t inter_frame_gap); // delay between two packets

CABA Ports

p_resetn : Global system reset•
p_clk : Global system clock•
p_vci : The VCI target port•
p_rx_irq[k] : As many RX IRQ ports as the number of channels•
p_tx_irq[k] : As many TX IRQ ports as the number of channels•

4) TLM-DT implementation

The TLM-DT implementation is not available yet.

CABA Constructor parameters 4

