
SocLib Components General Index

VciMultiTimer Functional Description
This VCI target is a memory mapped peripheral that can control up to 256 software controlled timers. Each timer
can optionally generate an independent periodic interrupt. The memory segment allocated to this component must
be aligned on 4K bytes boundary.

This hardware component cheks for segmentation violation, and can be used as a default target.

Memory region layout
The timer index i is defined by the ADDRESS[12:4] bits.

Each timer contains 4 memory mapped registers:

TIMER_VALUE: ADDRESS[3:0] = 0x0•

This 32 bits register is unconditionally incremented at each cycle. A read request returns the current time contained
in this register. A write request sets a new value in this register.

TIMER_MODE: ADDRESS[3:0] = 0x4 This register contains two flags:
Bit 0: TIMER_RUNNING. When 1, the associated timer will decrease on each cycle♦
Bit 1: TIMER_IRQ_ENABLED: When 1, the associated IRQ line will be activated if the timer
underflows.

♦

•

TIMER_PERIOD: ADDRESS[3:0] = 0x8•

This 32 bits register defines the period between two successive interrupts. It may be read or written to.

TIMER_RESETIRQ: ADDRESS[3:0] = 0xC•

Any write request in this Boolean register will reset the pending IRQ. A read request returns the zero value when
there is no pending interrupt, and returns a non zero value if there is a pending interrupt.

Component usage
For extensibility issues, you should access your terminal using globally-defined offsets.

You should include file source:trunk/soclib/include/soclib/timer.h from your software, it defines TIMER_VALUE,
TIMER_MODE, TIMER_PERIOD, TIMER_RESETIRQ, TIMER_SPAN, TIMER_RUNNING,
TIMER_IRQ_ENABLED.

Sample code:

#include "soclib/timer.h"

static const volatile void* timer_address = 0xc0000000;

static timer_test(const size_t timer_no)
{
 volatile int *timer = ((int*)timer_address) + timer_no*TIMER_SPAN;

Component usage 1

 // Getting / setting timer current value
 timer[TIMER_VALUE] = 0x2a00;
 uint32_t foo = timer[TIMER_VALUE];

 // Enabling timer and interrupt
 timer[TIMER_MODE] = TIMER_RUNNING | TIMER_IRQ_ENABLED;

 // Getting IRQ status, and resetting IRQ
 if (timer[TIMER_RESETIRQ])
 timer[TIMER_RESETIRQ] = 0;
}

(add -I/path/to/soclib/include to your compilation command-line)

Component definition
Available in source:trunk/soclib/desc/soclib/vci_timer.sd

Usage

VciTimer has no other parameter than VCI ones, it may be used like others, see SoclibCc/VciParameters

Use('vci_timer', **vci_parameters)

VciMultiTimer CABA Implementation
The caba implementation is in

source:trunk/soclib/systemc/include/caba/target/vci_timer.h•
source:trunk/soclib/systemc/src/caba/target/vci_timer.cc•

Template parameters:

The VCI parameters•

Constructor parameters
VciMultiTimer(
 sc_module_name name, // Component Name
 const soclib::common::IntTab & index, // Target index
 const soclib::common::MappingTable &mt, // MappingTable
 size_t nirq); // Number of available timers

Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci : The VCI port•
sc_out<bool> p_irq[] : Interrupts ports array•

VciMultiTimer CABA Implementation 2

