
SocLib Components General Index

VciMwmrController

1) Functional Description

This VCI component is the hardware part of the MWMR communication middleware. It allows an hardware
coprocessor to communicate to one or several MWMR channels. The coprocessor communicates with the MWWR
controller through several FIFO interfaces (one FIFO interface per MWMR channel). An internal FSM implements
the five steps MWMR communication protocol (5 VCI transactions for one MWMR transaction). This component
contains as many hardware FiFOs as the number of supported MWMR channels. An MWMMR transaction starts
when a Write FIFO is FULL, or when a Read FIFO is empty. The priority policy between the supported channels is
Round Robin.

This component is both a target and an initiator.

It is addressed as a target to be configured.•
It is acting as an initiator to do the MWMR transfers•

Besides the communication channels, this MWMR controller provides a variable number of unidirectionnal 32-bits
signals going from/to the coprocessor.

from the coprocessor, they are status registers•
to the coprocessor, they are configuration registers•

This hardware component cheks for segmentation violation, and can be used as a default target.

As a target this component contains the following memory mapped registers:

Registers 0 to MWMR_IOREG_MAX•

When read from, they reflects status registers, when written to, they reflects the control registers.

MWMR_RESET•

Writing into this register resets the current state of the controller, flushing all hardware FIFOs and the MWMR
controller configuration.

MWMR_CONFIG_FIFO_WAY and MWMR_CONFIG_FIFO_NO•

Used to designate the currently configured MWMR channel. WAY may be MWMR_TO_COPROC or
MWMR_FROM_COPROC, NO may be any MWMR channel in the selected way.

MWMR_CONFIG_STATE_ADDR•

Sets the address of state field for the selected MWMR channel.

MWMR_CONFIG_OFFSET_ADDR•

Sets the address of read/write pointer field for the selected MWMR channel.

MWMR_CONFIG_LOCK_ADDR•

VciMwmrController 1

Sets the address of the lock protecting the selected MWMR channel.

MWMR_CONFIG_DEPTH•

Sets the depth of the selected MWMR channel.

MWMR_CONFIG_WIDTH•

Sets the width of the selected MWMR channel. This will determine the atomic transfer block size. This must be
multiple of 4 bytes.

MWMR_CONFIG_BASE_ADDR•

Sets the address of the data buffer for the selected MWMR channel.

MWMR_CONFIG_RUNNING•

A boolean enabling the selected MWMR channel.

For extensibility issues, you should access the MwmrController using globally-defined offsets. You should include
soclib/MwmrController.h from your software, it defines all useful offsets and constants.

Sample code:

Please see source:trunk/soclib/platform/runtime_netlist/mwmr/soft/mwmr.h and
source:trunk/soclib/platform/runtime_netlist/mwmr/soft/mwmr.c for reference implementation.

(add -I/path/to/soclib/include to your compilation command-line)

2) Component definition & usage

source:trunk/soclib/soclib/module/internal_component/vci_mwmr_controller/caba/metadata/vci_mwmr_controller.sd?
See SoclibCc/VciParameters

Uses('vci_MwmrController', **vci_parameters)

3) CABA Implementation

CABA sources

interface :
source:trunk/soclib/soclib/module/internal_component/vci_mwmr_controller/caba/source/include/vci_mwmr_controller.h?

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_mwmr_controller/caba/source/src/vci_mwmr_controller.cpp?

•

CABA Constructor

VciMwmrController(
 sc_module_name name, // instance name
 const IntTab &index, // VCI target index
 const MappingTable &mt, // mapping table
 const size_t plaps, // time between two access to a given channel
 const size_t fifo_depth, // hardware FIFOs depth
 const size_t n_to_coproc, // number of read MWMR channels

1) Functional Description 2

 const size_t n_from_coproc, // number of write MWMR channels
 const size_t n_config, // number of configuration registers
 const size_t n_status) // number of status registers

CABA Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciTarget<vci_param> p_vci_target : The VCI target port•
soclib::caba::VciInitiator<vci_param> p_vci_initiator : The VCI initiator port•
soclib::caba::FifoOutput<uint32_t> p_to_coproc[] : Fifos to coprocessor•
soclib::caba::FifoInput<uint32_t> p_from_coproc[] : Fifos from coprocessor•
sc_out<uint32_t> p_config[] : Configuration ports•
sc_in<uint32_t> p_status[] : Status ports•

4) TLM-T Implementation

The TLM-T implementation is not available yet.

CABA Constructor 3

