
SocLib Components General Index

Component description

Objective

This component aims at encapsulating some code written in C into a hardware component, called virtual
coprocessor wrapper. The objective targetted is to have an estimation of the performances when a task is executed
in hardware, without having to write a real coprocessor.

Modelisation

The coprocessor is modeled by a hardware component, the wrapper, which contains registers, a transition function
and a Moore generation function. It can be interfaced with a vci_mwmr_controller that allows access to any
number of MWMR channels in memory. The C function corresponding to the hardware task is associated to a posix
thread, which is executed in parallel with the simulator for the architecture. This task thread is launched by the
wrapper on reset.

The task thread communicates with the wrapper with two fifo channels:

the cmd channel, which transmits to the wrapper the SRL commands. These commands take the form of
function calls in the task code:

srl_mwmr_read(channel, buffer, size)♦
srl_mwmr_write(channel, buffer, size)♦
srl_busy_cycles(n_cycles)♦

•

the rsp channel, which is used to transmit the response to the read requests•

To avoid race conditions, a single lock is used for both fifos cmd and rsp.

The wrapper is implemented as a four-state automaton, whose role is to execute the SRL commands transmitted by
the hardware task.

In IDLE state, the automaton tests if a command is available in the cmd fifo.
If yes, it gets the parameters and goes in a state corresponding to the type of the command to
execute it.

♦

If no, it waits until a command is available♦

1.

In READ state, the automaton transfers data from the MWMR controller directly into the buffer of the task
thread (1 word/cycle). When the last word has been transfered, the automatod signals the completion to
wake up the task thread, and returns in IDLE state.

2.

In WRITE state, the automaton makes the transfer from the task thread to the MWMR controller (1
word/cycle), and returns in idle when the transfer is complete.

3.

In BUSY state, the automaton decreases a counter at each cycle until the counter reaches 0.4.

Component description 1

Synchronization

The wrapper behaves as if all the SRL commands were blocking for the task thread, which is well adapted to
sequential coprocessors, which never execute several commands in parallel:

However, to avoid potential useless switches between the threads, only the read commands really are blocking.
Thus, if a task thread only makes writes, it will continue executing until the cmd fifo is considered full (the defaut
value is 50 commands, but it could be anything).

The two threads are synchronized with two pthread_cond_t conditions: task_cond and wrapper_cond.
Here is the simplified execution scheme on one (host) processor, for a task thread making only reads:

On creation, the task thread is executed•
The task thread makes a read: it sends a command and then try to read a response; as there is none, it waits
on task_cond

•

The wrapper thread is executed, receives the read request, and process it. When the response is ready, it
signals task_cond

•

The wrapper thread tries to read another command. As there is none, it waits on wrapper_cond•
The task thread is executed, and makes another read, etc.•

Here is the simplified execution scheme on one (host) processor, for a task thread making only writes:

On creation, the task thread is executed•
The task thread makes a write: it sends a command and then continue its execution•
After a certain number of writes, the command fifo reaches its maximum value. The task thread signals
wrapper_cond and waits on task_cond

•

The wrapper thread is executed, and start processing all the writes commands.•
When there is no more commands in the cmd fifo, the wrapper thread signals task_cond and waits on
wrapper_cond

•

The task thread is executed, and makes another write, etc.•

With several cores, the difference is that after the creation of the task thread, the wrapper thread can continue its
execution, and theoritically consume the writes as they are produced, thus none of the threads never waits (though
in practice the task thread will always be faster).

Component usage
The virtual Coprocessor Wrapper is primarily intended to be used with Dsx-vm (to be released soon?), but it can
also be used "by hand".

Example

In the following is an example of a dummy adder task, which makes a vectorial 32-bit addition of size 8 (i.e. there
are 16 words in input and 8 words in output). 3 files must be created:

my_adder_copro.sd•
my_adder_copro.h•
my_adder_copro.cpp•

The file my_adder_copro.sd must contain the following:

Component usage 2

#-*- python -*-

Module('caba:my_adder_copro',
 classname = 'dsx::caba::MyAdderCopro',
 header_files = [

"my_adder_copro.h",

],
 interface_files = [

],
 implementation_files = [

"my_adder_copro.cpp",

],
 ports = [

],
 uses = [
 Uses('caba:virtual_copro_wrapper'),

],
 instance_parameters = [

],
 tmpl_parameters = [

],
 extensions = [

],
)

The file my_adder_copro.h must be as following:

#ifndef _ADDER_COPRO_H
#define _ADDER_COPRO_H

#include <systemc>

#include "virtual_copro_wrapper.h"

namespace dsx { namespace caba {

class MyAdderCopro
: public dsx::caba::VirtualCoprocessorWrapper

{

public:
~MyAdderCopro();

 MyAdderCopro(sc_core::sc_module_name insname);

private:
void * task_func(); // Task code

};

}}
#endif /* _ADDER_COPRO_H */

Finally, the file my_adder_copro.cpp must contain the task code. We declare here two "input fifos" (input0
and input1) and one "output fifo" (output) in the constructor.

#include "my_adder_copro.h"

namespace dsx { namespace caba {

#define tmpl(...) __VA_ARGS__ MyAdderCopro

Example 3

tmpl(/**/)::~MyAdderCopro()
{
}

tmpl(/**/)::MyAdderCopro(sc_core::sc_module_name insname)
:dsx::caba::VirtualCoprocessorWrapper(insname, stringArray("output", NULL), intArray(1, 8), stringArray("input0", "input1", NULL), intArray(2, 8, 8))

{
}

tmpl(void *)::task_func() {
 srl_mwmr_t input = SRL_GET_MWMR(input);
 srl_mwmr_t output = SRL_GET_MWMR(output);

uint32_t in0[8];
uint32_t in1[8];
uint32_t out[8];

while (true) {
 srl_mwmr_read(input0, &in0, 1); // Read 8 words from input0, i.e. 1 item since the fifo is 8-word wide
 srl_mwmr_read(input1, &in1, 1); // Read 8 words from input1

for (int32_t i = 0; i < 8; i++) {
 out[i] = in0[i] + in1[i];

}
 srl_busy_cycles(2); // The computation takes 2 cycles
 srl_mwmr_write(output, &out, 1); // Write 8 words to output

}
}

}}

The prototype of the parent class VirtualCoprocessorWrapper is:

VirtualCoprocessorWrapper(
 sc_core::sc_module_name insname,

const vector<string> &fifos_out,
const vector<int32_t> &fifos_out_width,
const vector<string> &fifos_in,
const vector<int32_t> &fifos_in_width)

: soclib::caba::BaseModule(insname)

with

fifos_out
a vector containing the names of the output fifos

fifos_out_width
a vector containing the width of the output fifos

fifos_in
a vector containing the names of the input fifos

fifos_in_width
a vector containing the width of the input fifos

The functions stringArray and intArray construct these vectors, the first argument of intArray being the
number of fifos.

Component Instanciation

Component Instanciation 4

CABA Ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
FifoOutput<uint32_t> * p_to_ctrl : list of output ports to connect to a
soclib::caba::VciMwmrControllerCas via a
soclib::caba::FifoSignals<uint32_t>.

•

FifoInput<uint32_t> * p_from_ctrl : list of input ports to connect to a
soclib::caba::VciMwmrControllerCas via a
soclib::caba::FifoSignals<uint32_t>.

•

CABA Ports 5

