
Installation Notes

Prepare the environment

You'll need:

A C++ compiler, preferably g++•
A working SystemC implementation

?OSCI implementation♦
SystemCass♦

•

Binutils and BFD for your target CPU, see Cross Compiler•
A ?Subversion client•
A recent ?Python interpreter•
A bourne-shell compatible, like bash•
?SDL (for graphic utilities)•
xterm, the X11 terminal emulator•

Getting SoCLib

Please note SVN repository contains ?`svn:externals` references to transparently checkout other repositories within
SoCLib's one. This standard feature is well supported by ?vanilla Subversion client but is unsupported by most
alternative clients. Please ensure your client does support externals.

$ cd where/to/put/soclib
$ svn co https://www.soclib.fr/svn/trunk/soclib soclib

Put soclib/bin in your $PATH, preferably add this line in your shell's startup scripts.

$ export PATH=$PATH:where/to/put/soclib/utils/bin

Compiling tools

Some tools need compilation before use:

$ cd where/to/put/soclib/utils/src
$ make
$ make install

Configuration

SystemC

You may edit [SoclibConf SoCLib's configuration file]. Out of the box, the only thing the configuration needs is
setting an environment variable pointing to your SystemC implementation. Again this may preferably reside in your
shell's startup scripts:

$ export SYSTEMC=/path/to/systemc

If you want to check, you should have a listing close to this one:

$ ls $SYSTEMC
AUTHORS ChangeLog LICENSE README docs include

Installation Notes 1

http://www.systemc.org/
http://subversion.tigris.org/
http://www.python.org/
http://www.libsdl.org/
http://svnbook.red-bean.com/en/1.0/ch07s03.html
http://subversion.tigris.org/

COPYING INSTALL NEWS RELEASENOTES examples lib-linux

Cross-compilation tools

By default, platform examples expect cross-toolchains compiled as described in Cross Compiler. I.e. it expects
mipsel-unknown-elf-gcc, powerpc-unknown-elf-gcc and mb-gcc (Xilinx ships a Microblaze
compiler named it this way).

If you already have cross-toolchains compiled on your host, you can declare them in
~/.soclib/soft_compilers.conf. For each architecture in mipsel, powerpc and microblaze, you
may define:

<arch>_CC_PREFIX = ...
<arch>_CFLAGS = ...
<arch>_LDFLAGS = ...

For instance, if you want to use a mips cross-compiler configured for Linux (GNU+Glibc), you can declare:

mipsel_CC_PREFIX = mipsel-linux-elf-
mipsel_CFLAGS += -nostdinc
mipsel_LDFLAGS += -nostdlib

nostdinc and nostdlib disable default libraries (Glibc) from compilation and linking.

Pay attentions to default values in /path/to/soclib/utils/conf/soft_flags.mk, they may be of
some usefulness. Dont directly modify soft_flags.mk unless you intend to commit your modifications. This is
a versionned file !

Other paths

You should have cross-compilers in you path as well. For instance you should have a generic mipsel compiler
toolsuite available as mipsel-unknown-elf-*.

If they are not in the $PATH, add them in:

$ export PATH=$PATH:/path/to/compiler/suite/bin

Testing

Let's compile a simple platform:

$ cd /path/to/soclib/soclib/platform/topcells/caba-vgmn-multi_timer-mipsel
$ make
[...]
$./simulation.x 1000000

If ever this fails, see if [SoclibConf SoCLib's configuration file] may help you.

FAQ

Frequently asked questions: When things goes wrong

SystemC 2

