Cosimulation using SoCLib components and RTL
models

You may use CABA models together with RTL models using ModelSim. This needs the following parts:

¢ a set of SystemC models

¢ a set of Verilog/VHDL models

e glue wrappers where needed, exporting a RTL model to SystemC or SystemC to RTL (not covered in this
guide)

¢ a SystemC clock driver (we had some issues with vhdl clock driver), i.e. a module bagotting clock signal

SystemC modules are SoCLib ones and are usually compiled with SoCLib-cc. They come with pure-c++
dependancies which must be linked together with the modules.

Due to its simulator core design, ModelSim has to compile SystemC modules a special way, and has a dedicated
tool to compile SystemC/C++ files: sccom.

Soclib-cc has three main jobs:
® Select modules and dependancies from a platform description file,
¢ Explicitly instantiate C++ templates,

e Call the C++ compiler. Only this step is implemented in sccom.

The flow is as in the picture:

1]
soclib-cc handles most of this automagically if correctly configured. This guide explains how to set things up.

Moreover, the C/C++ only dependancies are not directly compileable with the dedicated ModelSim tool, but can be
injected at the last time, for the linkage phase (sccom -1ink).

How to configure SoCLib-cc to call ModelSim
compiler driver

Sometimes, the C++-only dependencies of SystemC modules need to Know about SystemC types. Therefore,
SystemC includes must be available.

soclib-cc needs new configuration sections for
¢ the compiler used by sccom
¢ the path to ModelSim's SystemC implementation
¢ used flags
¢ object file names pattern in sccom work directory
For all these, we must create 3 new configurations in soclib-cc's configuration file:
® a compiler

¢ a SystemC library
® 3 build environment

How to configure SoCLib-cc to call ModelSim compiler driver 1

Definition of the compiler used for ModelSim-usable SoCLib components.
We use sccom for components compilation and linkage, gcc/g++ for utilities
config.toolchain_sccom = Config(
base = config.toolchain,
Must use this.
tool_map = {
'SCCOM_CC':'sccom',
'SCCOM_CXX':'sccom',
'CC':'gcc',
'CXX':'gtt!',
'CC_LINKER':'sccom',
'CXX_LINKER':'sccom',
}!
Modelsim cant do parallel builds :'(

max_processes = 1,

No cflags are needed, sccom forces them

cflags = [],

Special features, it has a -link invocation needed at end...
libs = ['-1link'],

Definition of the ModelSim SystemC implementation. Must modify the

path according to the ModelSim current installation.

config.systemc_sccom = Config(
base = config.systemc,
This special vendor attributes enables some quirks in soclib-cc
vendor = 'sccom',
This is the path of the produced .o files when compiled with sccom.
You have to try it by hand, and adapt

sc_workpath = "work/_sc/linux_gcc—-4.1.2",
Mandatory quirks

dir = llll,

os = ""

libs = [],

cflags have to be deducted from actual invocation

Try using sccom -v by hand

cflags = ['-I/users/soft/mentor/modelsim-6.5c/modeltech/include/systemc’,
'-I/users/soft/mentor/modelsim-6.5c/modeltech/include'],

Definition of a new build environment, which can be referenced with 'soclib-cc -t'
config.sccom = Config(

base = config.build_env,

toolchain = config.toolchain_sccom,

systemc = config.systemc_sccom,

Where temporary files lies, beware that if you set a global path,

you'll need a mechanism to make user-unique directories.

repos = "/tmp/",

)

SystemC modules in ModelSim limitations

All modules that may be used from the outside of the SystemC-part (from RTL or from GUI) have to be declared
with a special macro (SC_MODULE_EXPORT).

There is no sc_main () function in modelsim-based simulators. The top module must be a sc_module with no
interfaces. This probably needs a rewrite of your netlists.

If you use DSX-generated netlists, this is done transparently.

SystemC modules in ModelSim limitations

Usage

Now we configured soclib-cc, we can compile a complete SystemC system.

Example to come

Usage

