
Cosimulation using SoCLib components and RTL
models
You may use CABA models together with RTL models using ModelSim. This needs the following parts:

a set of SystemC models•
a set of Verilog/VHDL models•
glue wrappers where needed, exporting a RTL model to SystemC or SystemC to RTL (scgenmod to export
RTL model to SystemC but this is not covered in this guide)

•

a SystemC clock driver (we had some issues with vhdl clock driver), i.e. a module bagotting clock signal•

SystemC modules are SoCLib ones and are usually compiled with SoCLib-cc. They come with pure-c++
dependancies which must be linked together with the modules.

Due to its simulator core design, ModelSim has to compile SystemC modules a special way, and has a dedicated
tool to compile SystemC/C++ files: sccom.

Soclib-cc has three main jobs:

Select modules and dependancies from a platform description file,•
Explicitly instantiate C++ templates,•
Call the C++ compiler. Only this step is implemented in sccom.•

The flow is as in the picture:

soclib-cc handles most of this automagically if correctly configured. This guide explains how to set things up.

Moreover, the C/C++ only dependancies are not directly compileable with the dedicated ModelSim tool, but can be
injected at the last time, for the linkage phase (sccom -link).

How to configure SoCLib-cc to call ModelSim
compiler driver
Sometimes, the C++-only dependencies of SystemC modules need to Know about SystemC types. Therefore,
SystemC includes must be available.

soclib-cc needs new configuration sections for

the compiler used by sccom•
the path to ModelSim's SystemC implementation•
used flags•
object file names pattern in sccom work directory•

For all these, we must create 3 new configurations in soclib-cc's configuration file:

a compiler•
a SystemC library•
a build environment•

How to configure SoCLib-cc to call ModelSim compiler driver 1

Definition of the compiler used for ModelSim-usable SoCLib components.
We use sccom for components compilation and linkage, gcc/g++ for utilities
config.toolchain_sccom = Config(
 base = config.toolchain,
 # Must use this.
 tool_map = {
 'SCCOM_CC':'sccom',
 'SCCOM_CXX':'sccom',
 'CC':'gcc',
 'CXX':'g++',
 'CC_LINKER':'sccom',
 'CXX_LINKER':'sccom',
 },
 # Modelsim cant do parallel builds :'(
 max_processes = 1,
 # No cflags are needed, sccom forces them
 cflags = [],
 # Special features, it has a -link invocation needed at end...
 libs = ['-link'],
)

Definition of the ModelSim SystemC implementation. Must modify the
path according to the ModelSim current installation.
config.systemc_sccom = Config(
 base = config.systemc,
 # This special vendor attributes enables some quirks in soclib-cc
 vendor = 'sccom',
 # This is the path of the produced .o files when compiled with sccom.
 # You have to try it by hand, and adapt
 sc_workpath = "work/_sc/linux_gcc-4.1.2",
 # Mandatory quirks
 dir = "",
 os = "",
 libs = [],
 # cflags have to be deducted from actual invocation
 # Try using sccom -v by hand
 cflags = ['-I/users/soft/mentor/modelsim-6.5c/modeltech/include/systemc',
 '-I/users/soft/mentor/modelsim-6.5c/modeltech/include'],
)

Definition of a new build environment, which can be referenced with 'soclib-cc -t'
config.sccom = Config(
 base = config.build_env,
 toolchain = config.toolchain_sccom,
 systemc = config.systemc_sccom,
 # Where temporary files lies, beware that if you set a global path,
 # you'll need a mechanism to make user-unique directories.
 repos = "/tmp/",
)

SystemC modules in ModelSim limitations
All modules that may be used from the outside of the SystemC-part (from RTL or from GUI) have to be declared
with a special macro (SC_MODULE_EXPORT).

There is no sc_main() function in modelsim-based simulators. The top module must be a sc_module with no
interfaces. This probably needs a rewrite of your netlists.

If you use DSX-generated netlists, this is done transparently.

SystemC modules in ModelSim limitations 2

Usage
Now we configured soclib-cc, we can compile a complete SystemC system.

Example to come

Usage 3

