SoCLib's compilation helper
Why ?

We use a lot of tricky things things

e Different SystemC backends (SystemC-OSClI, SystemCASS, SoCView) each of them is a different
implementation of the same LRM, and yields incompatible objects

e Templated classes. The usual way of using templated code is to put all code in .h, having template code
emitted at use in main C++ file.

This is good for small utilities, but SystemC modules may be more than 1000
lines-long, and more that 40 of them may be used in a topcell. This may yield a
single translation unit with more than 50000 lines of code, heavily templated. This
implies some usage issues (compiler getting out of memory, unreasonnable
compile times)

Therefore we need two features:

¢ Separate implementation: Put template class definition and implementation in two separate files. Compile
them separately.

This implies template code must be explicitely instanciated with
some template class Foo<parameters>; code. It has

to be done automatically.

® Object reuse: Once modules built separately, we can put objects in a global repository and use the in a
cached way.

e Different build modes (debugging, profiling release, others ?7)

Reuse of current tools ??

This could be seen as reimplementing make, or even SCons, and this is not totally false. This is all about flexibility,
and user-input readibility.

There is no build tool known out the which does object caching and template instantiation at the same time. Even if
current build tools may be enhanced to do the job, this is not an easy task.

This very tool has been implemented as a make wrapper before, generated Makefiles were unreadable (all
templates parameters in the middle, ...), and it did not work so well.

Configuration

In order to compile SoCLib objects, we need:

¢ a working SystemC installation
¢ a working GNU-C++ compiler

Soclib-cc processes three files in order:

Configuration 1



1. soclib-dir]/etc/soclib.conf
2.~/.soclib/global.conf
3. ./soclib.conf

These files contain multiple concurrent configurations for building SoCLib. One of them will be chosen
(explicitely) as the default one. Others may be used on demand (through command-line or local configuration file)

e File [1] is installation-global. It should be modified by the administrator for a network-wide configuration.
e File [2] is useful for a developper's own configuration. This allows to use a local development branch of a
local SystemC, ...

e File [3] is directory-local, this allows to choose different flavours of previously declared configurations

See SoclibConf for a usage guide to these files.

Usage

Soclib-cc may be used two ways:
® As a compiler wrapper. It will just be a CXX wrapper, handling compilation or linkage on demand. This
can be useful for external Makefile integration.
® As a complete platform compiler. From an ad-hoc platform definition (wrappers can be written to accept
other formats), the complete simulator will be compiled.
Try running soclib-cc -h.

As a compiler

The usual way:

$ soclib-cc -c -o obj.o file.cc
$ soclib-cc -o sim obj.o ...

As a platform compiler

$ soclib-cc -p platform_def

Global flags

-v
Print command lines

-q
Dont say anything

-m MODE
Change compilation mode (release, debug, prof) This changes in an homogenous way the building

Object repository

As objects can be reused between builds, or even between platforms, we may want to place objects in a global
repository.

Default repository is in current directory, in '$(SOCLIB)/repos/'. If you want, you can specify another absolute path
in configuration.

Usage 2



