
Quick start1.
The long theory

Default configuration1.
Inheriting2.
Variables3.
What was done in quick start4.

2.

Fields
Build environment1.
SystemC2.
Toolchain3.

3.

Adding other component libraries to soclib-cc search path4.

Quick start
SoCLib's configuration file is used by soclib-cc to find your tools paths. You may override:

SystemC implementation to use (its paths, ...)•
Compiler and compiler flags•
Where objects reside•

Let's suppose we want to override SystemC's path, we can write the following ~/.soclib/global.conf:

config.systemc_22 = Config(
 base = config.systemc,
 dir = "/home/me/tools/systemc/2.2"
)

config.default = Config(
 base = config.default,
 systemc = config.systemc_22
)

Now let's suppose we would like to add another configuration where we use SystemCass. We don't want compiled
objects to mix-up, so we'll set another built files repository.

config.systemc_cass = Config(
 base = config.systemc,
 dir = "/home/me/tools/systemc/cass",
 libs = config.systemc.libs + ["-Wl,-rpath,%(libdir)s", "-ldl", "-fopenmp"],
)

config.use_systemcass = Config(
 base = config.default,
 repos = "repos/systemcass_objs",
 systemc = config.systemc_cass
)

Now if we want to compile a platform with SystemCass, the only thing to is to tell it to soclib-cc:

$ soclib-cc -t use_systemcass

The argument after -t is the configuration name, attribute set to config in this line:

config.use_systemcass = Config(....

Quick start 1

The long theory

Default configuration

SoCLib's configuration file is using inherence in order to be able to share parameters among different similar
instances.

There are 3 base configurations to inherit from:

config.toolchain to define a compiler suite•
config.systemc to define a SystemC implementation•
config.build_env to define a build environment. This one must reference one instance of each of the
above.

•

There are 2 default configuration classes:

config.systemc.
It inherits from config.systemc, you may inherit from either of them♦
It expects the environment variable $SYSTEMC to point to your actual SystemC installation
directory

♦

•

config.default.
It inherits from config.build_env, you may inherit from either of them♦
It uses the default compiler (gcc & g++) and config.systemc♦

•

Inheriting

Inherence is written using base = as follows:

my_new_config = Config(
 base = parent,
 other_var =
)

config is a global object defined by configuration system. It holds current configuration status.

Variables

soclib-cc's -t arg option will change used configuration. It will make configuration system look for
config.arg. You should have defined it before.

What was done in quick start
Defining a SystemC implementation inheriting everything
from default SystemC declaration
config.systemc_22 = Config(
 base = config.systemc,
 dir = "/home/me/tools/systemc/2.2"
)

Then defining a new default configuration,
inheriting from previous default configuration
config.default = Config(
 base = config.default,
 systemc = config.systemc_22,

The long theory 2

)

Now with SystemCASS

Declare a new SystemC implementation
config.systemc_cass = Config(
 base = config.systemc,
 dir = "/home/me/tools/systemc/cass",
)

config.use_systemcass = Config(
 base = config.default,

 # This defines a new path to store compiled objects to
 # See 'fields' section below
 repos = "repos/systemcass_objs",

 # and here we tell this configuration use the SystemC implentation
 # declared above.
 systemc = config.systemc_cass,
)

Fields
You may put "%(name)s" anywhere in strings used for expansion, this will expand to value of name attribute in the
same class. See systemc definition below.

Build environment

This is the one you may specify from command line with -t. By default, this is default. It inherits directly or
indirectly from config.build_env.

toolchain
A class derived from config.toolchain

systemc
A class derived from config.systemc

mode
Default mode. default: "release"

repos
Path where object files are stored, it may be absolute or relative to current path (where soclib-cc is run)

SystemC

dir
The directory containing SystemC installation

os
The current os, for expansion in following variable

libdir
"%(dir)s/lib-%(os)s"

libs
Link flags. default: ['-L%(libdir)s', '-lsystemc']

cflags
Cflags. default: ['-I%(dir)s/include']

Fields 3

Toolchain

prefix
a string prepended to all tollchain tools. (eg: "i686-pc-linux-gnu-")

cflags
global cflags. default: "-Wall"

libs
global linking arguments. default: "-lbfd"

release_cflags
cflags used for a "release" build, ie everyday build. default: "-O2"

release_libs
linking arguments for a "release" build. default: none

debug_cflags
cflags used for a "debug" build, ie when there is a bug to nail down. default: "-ggdb"

debug_libs
linking arguments for a "debug" build. default: none

prof_cflags
cflags used for a "profiling" build, ie performance test build. default: "-pg"

prof_libs
linking arguments for a "profiling" build. default: "-pg"

max_processes
Maximum simultaneous compilation processes run (same as -j command-line flag)

max_name_length
Maximum file name length for the file system repos is located in. If object file has a longer name, it is
hashed to get a shorter one, around 16 chars.

Cflags used for compilation will be cflags + mode_cflags•
Libs used for compilation will be libs + mode_libs•
mode is selected in current build environment, or on command line (flag -m)•

Adding other component libraries to soclib-cc search
path
Soclib-cc searches metadata files in soclib's module directories. This default behavior can be tweaked to add other
paths on search list. Simply call addDescPath in any of your configuration files:

config.addDescPath("/path/to/my/components")

This method may be called more than once to add more directories.

Adding other component libraries to soclib-cc search path 4

