
Quick start1.
The long theory

Configuration objects1.
Inheriting2.
Inherence and default fields values3.
Variables4.
What was done in quick start5.

2.

Fields
Library1.
Toolchain2.
Build environment3.

3.

Adding other component libraries to soclib-cc search path4.

Quick start
SoCLib's configuration file is used by soclib-cc to find your tools paths. You may override:

libraries: SystemC implementation to use (its paths, ...), tlm, ...•
toolchain: Compiler and compiler flags•
build env: toolchain, libraries and other flags (where objects reside, ...)•

Let's suppose we want to override SystemC's path, we can write the following ~/.soclib/global.conf:

config.libsystemc_22 = Library(
 parent = config.systemc,
 dir = "/home/me/tools/systemc/2.2"
)

config.foo = BuildEnv(
 parent = config.build_env,
 libraries = [config.libsystemc_22],
)

config.default = config.foo

Now let's suppose we would like to add another configuration where we use SystemCass. We don't want compiled
objects to mix-up, so we'll set another repository for built files.

config.libsystemcass = Library(
 parent = config.systemc,
 dir = "/home/me/tools/systemc/cass",
 libs = config.systemc.libs + ["-Wl,-rpath,%(libdir)s", "-ldl", "-fopenmp"],
)

config.systemcass = BuildEnv(
 parent = config.default,
 repos = "repos/systemcass_objs",
 libraries = [config.libsystemccass],
)

Now if we want to compile a platform with SystemCass, the only thing to is to tell it to soclib-cc:

$ soclib-cc -t systemcass

The argument after -t is the configuration name, attribute set to config in this line:

config.systemcass = BuildEnv(....

Quick start 1

The only configuration names that can be passed to -t are the ones associated to BuildEnvs.

The long theory

Configuration objects

SoCLib's configuration file is using inherence in order to be able to share parameters among different similar
instances.

There are 3 base configurations objects to define:

Toolchain to define a compiler suite•
Library to define a library, like a SystemC implementation•
BuildEnv to define a build environment. This one must reference one instance of each of the above.•

You must define a set of these classes. There is a default configuration. It is composed of 3 default configuration
classes:

config.systemc.
It is a Library.♦
It expects the environment variable $SYSTEMC to point to your actual SystemC installation
directory

♦

•

config.toolchain.
It is a Toolchain.♦
It uses the default compiler (gcc & g++)♦

•

config.build_env.
It is a BuildEnv.♦
It uses the two previous ones.♦

•

Inheriting

Inherence is written using parent = as follows:

config.my_new_toolchain = Toolchain(
 parent = config.toolchain,
 cflags =
)

config is a global object defined by configuration system. It holds current configuration status.

Inherence and default fields values

Using a parent is optional. If you use parent =, all the parent's fields are used as default values for the newly
created configuration. Thus you only have to override custom fields.

You can also use no parent, then all fields are needed, see below for the list.

Variables

soclib-cc's -t arg option will change used configuration. It will make configuration system look for
config.arg. You should have defined it before.

The long theory 2

What was done in quick start
Defining a SystemC implementation inheriting everything
from default SystemC declaration
config.libsystemc_22 = Library(
 parent = config.systemc,
 dir = "/home/me/tools/systemc/2.2"
)

Then defining a new default configuration,
inheriting from default build environment
config.sc22 = BuildEnv(
 parent = config.build_env,
 libraries = [config.libsystemc_22],
)
config.default = config.sc22

Now with SystemCASS

Declare a new SystemC implementation
config.libsystemccass = Library(
 parent = config.systemc,
 dir = "/home/me/tools/systemc/cass",
)

config.scass = BuildEnv(
 parent = config.default,

 # This defines a new path to store compiled objects to
 # See 'fields' section below
 repos = "repos/systemcass_objs",

 # and here we tell this configuration use the SystemC implentation
 # declared above.
 libraries = [config.libsystemcass],
)

Fields
You may put "%(name)s" anywhere in strings used for expansion, this will expand to value of name attribute in the
same class. See systemc definition below.

cflags, <mode>_cflags, libs, <mode>_libs are all optional.

Library

name
Name of the library (what it implements), "systemc" is currently the only specified value.

vendor
Provider of the library, used for some quirks in soclib-cc. "modelsim" and "OSCI" are currently the only
specified values.

libs
Link flags. default: ['-L%(libdir)s', '-lsystemc']

cflags
Cflags. default: ['-I%(dir)s/include']

release_cflags
cflags used for a "release" build, ie everyday build.

release_libs

Fields 3

linking arguments for a "release" build.
debug_cflags

cflags used for a "debug" build, ie when there is a bug to nail down.
debug_libs

linking arguments for a "debug" build.
prof_cflags

cflags used for a "profiling" build, ie performance test build.
prof_libs

linking arguments for a "profiling" build.

Default config.systemc? example:

config.systemc = Library(
 name = 'systemc',
 vendor = 'OSCI',
 libs = ['-L%(libdir)s', '-lsystemc', '-lpthread'],
 cflags = ['-I%(dir)s/include'],

 # libs and cflags are implemented a generic way, now we
 # have to provide "libdir" and "dir"

 libdir = '%(dir)s/lib-%(os)s',
 dir = "${SYSTEMC}",

 # Again, libdir uses 'dir' and 'os', thus we have to define "os"
 # here we use the value provided by a function.
 os = _platform(),
)

Toolchain

prefix
a string prepended to all toolchain tools.

cflags
global cflags.

libs
global linking arguments.

release_cflags
cflags used for a "release" build, ie everyday build.

release_libs
linking arguments for a "release" build.

debug_cflags
cflags used for a "debug" build, ie when there is a bug to nail down.

debug_libs
linking arguments for a "debug" build.

prof_cflags
cflags used for a "profiling" build, ie performance test build.

prof_libs
linking arguments for a "profiling" build.

max_processes
Maximum simultaneous compilation processes run (same as -j command-line flag)

Cflags used for compilation will be cflags + mode_cflags•
Libs used for compilation will be libs + mode_libs•
mode is selected in current build environment, or on command line (flag -m)•

Library 4

Build environment

This is the one you may specify from command line with -t. By default, this is the configuration set to
config.default last. The following fields must be set.

toolchain
A Toolchain to use for compilation

libraries
A list (enclosed in []) of Library to be used for compilation and linkage of programs.

repos
Path where object files are stored, it may be absolute or relative to current path (where soclib-cc is run)

max_name_length
Maximum file name length for the file system repos is located in. If object file has a longer name, it is
hashed to get a shorter one, around 12 chars.

repos
A directory to store temporary build files.

cache_file
A path to a file where to store metadata file indexation cache. Default is "%(repos)s/soclib_cc.cache", i.e. a
path relative to repos.

Adding other component libraries to soclib-cc search
path
Soclib-cc searches metadata files in soclib's module directories. This default behavior can be tweaked to add other
paths on search list. Simply call addDescPath:

config.addDescPath("/path/to/my/components")

This method may be called more than once to add more directories.

Adding other component libraries to soclib-cc search path 5

