GDB Server for Soclib

The GdbServer tool is a software debugger for SoClib.

Overview

The GdbServer is able to manage all processors in a soclib platform. It listens for TCP connection from <u>?Gnu GDB</u> clients. Once connected, clients can be used to freeze, run, step every processor in the platform, add breakpoints, catch exceptions and dump registers and memory content.

Implementation

The GdbServer contains no processor specific code and can be used to manage any Soclib processor model using the generic Iss interface. It is implemented as an Iss wrapper class. When the GdbServer is in use, it intercepts all events between the processor Iss model and the Soclib platform. This enables the GdbServer to access platform ressources as viewed from the processor without modifing platform components or processor model source code. The GdbServer is able to freeze the wrapped processor model while the platform is still running.

In order to simplify the debug in a multi-processor context, all processors wrapped in a GdbServer will be frozen when a breakpoint is detected in one single processor.

Usage

Adding GdbServer support to your platform

Adding the GdbServer to your topcell is easy. First include the header:

#include "gdbserver.h"

Then replace processor instantiation:

```
// Without GdbServer
// soclib::caba::VciXcacheWrapper<soclib::common::Mips32ElIss> cpu0("cpu0", 0, maptab, IntTab(0)
// With GdbServer
soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<soclib::common::Mips32ElIss> > cpu0(
```

Then define the cpu as frozen directly at the boot:

soclib::common::GdbServer<soclib::common::Mips32ElIss>::start_frozen();

Finally do not forget to update the platform description file:

Uses('iss_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:mips32el'),

Iss v1 and XCacheWrapper example

For using the GdbServer with the legacy Iss v1 simulators (like mipsel) models, the platform description file should contain:

Uses('vci_xcache_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:ississ2', iss2_t = 'com

The topcell description (top.cpp) should contain:

soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<vci_param, soclib::common::IssIss2<socl</pre>

Connecting with a GDB client

When the simulation is running, the GDB Server listen for client connections on TCP port 2346.

\$./system.x mutekh/kernel-soclib-mips.out

Its easy to connect to the simulation with a suitable gdb client:

• First launch the gdb client

```
$ mipsel-unknown-elf-gdb mutekh/kernel-soclib-mips.out
GNU gdb 6.7
```

Copyright (C) 2007 Free Software Foundation, Inc.

• Then enter this first command at the prompt

```
(gdb) target remote localhost:2346
Remote debugging using localhost:2346
0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>) at /home/diaxen/proje
99 {
```

Note that you can avoid to type this command every time: you just have to copy it in a .gdbinit file (in the same repertory from where you are lauching gdb).

Processor state analysis

The processors are now frozen. Each processor is seen as a thread by the GDB client:

```
(gdb) info threads
4 Thread 4 (Processor mips_iss3) 0xe010ceec in cpu_atomic_bit_waitset (a=0x602002cc, n=<error
at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99
3 Thread 3 (Processor mips_iss2) 0xe010ce64 in lock_spin (lock=0x602002cc) at /home/diaxen/pr
2 Thread 2 (Processor mips_iss1) 0xe010d110 in gpct_lock_HEXO_SPIN_unlock (lock=0x602061e8) at
* 1 Thread 1 (Processor mips_iss0) 0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error
at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99</pre>
```

The first processor has thread id 1. A specific processor can be selected for registers examination with the thread command.

Note this does change processor used for single step execution though. (see advanced commands sections)

```
(gdb) thread 1
[Switching to thread 1 (Thread 1)]#0 0x6011d370 in sched_context_stop_unlock ()
```

Classical GDB debugging session takes place. Here is a register dump of the processor 0 (thread 1):

```
(gdb) info registers
     zero
            at
                 vΟ
                       v1
                            a0
                                  a1
                                       a2
                                            аЗ
R0
   00000000 0000ff00 0000001 0000000 60200338 00000001 00000000 e010e74c
      t0
            t1
                 t2
                       t3
                            t4
                                  t5
                                       t6
                                            t7
   R8
            s1
                 s2
                            s4
                                       s6
                       s3
                                  s5
      s0
                                            s7
   R16
      t8
            t9
                 k0
                       k1
                            qp
                                  sp
                                       s8
                                            ra
R24 00000000 00000000 00000000 602007fc 60207ff0 60205ce8 60205ce8 e0101134
                 hi
                      bad
                          cause
      sr
            10
                                  рc
   fir
      fsr
```

Running code

The following rules apply:

- All the managed processors are frozen at the same time when the gdb client prompt is displayed.
- When using the continue command, all processors resume at the same time.
- Single step execution is **only** performed on the processor which was interrupted. User selection of a different processor for data examination with the thread command does **not** change this. (see advanced commands section below)

Advanced commands

The gdb client offers a easy way to send server specific data though the monitor command. Our GdbServer takes advantages of the monitor command to provide useful advanced features:

• The processor (thread id) used for step by step execution may be forced for the next **single step** operation:

```
(gdb) monitor stepcpu 1
```

• The GdbServer may be instructed to break on processor exception or to let the processor jump in its exception handler transparently. When used with an extra parameter, this setting can apply to a single processor instead of all. The following command enable exception catching for thread id 2 (processor 1):

(gdb) monitor except 1 2

• The gdb protocol debug mode may enabled to dump interaction between client and server:

(gdb) monitor debug 1

More informations on using the GDB client can be found on the <u>?The GNU Project Debugger</u> home page.