
GDB Server for Soclib
The GdbServer tool is a software debugger for SoClib.

Overview

The GdbServer is able to manage all processors in a soclib platform. It listens for TCP connection from ?Gnu GDB
clients. Once connected, clients can be used to freeze, run, step every processor in the platform, add breakpoints,
catch exceptions and dump registers and memory content.

Implementation

The GdbServer contains no processor specific code and can be used to manage any Soclib processor model using
the generic Iss interface. It is implemented as an Iss wrapper class. When the GdbServer is in use, it intercepts all
events between the processor Iss model and the Soclib platform. This enables the GdbServer to access platform
ressources as viewed from the processor without modifing platform components or processor model source code.
The GdbServer is able to freeze the wrapped processor model while the platform is still running.

In order to simpfify the debug in a multi-processor context, all processors wrapped in a GdbServer will be frozen
when a breakpoint is detected in one single processor.

Usage

Adding GdbServer support to your platform

Adding the GdbServer to your topcell is easy. First include the header:

#include "gdbserver.h"

Then replace processor instantiation:

 // Without GdbServer
// soclib::caba::VciXcacheWrapper<soclib::common::Mips32ElIss> cpu0("cpu0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);
 // With GdbServer
 soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<soclib::common::Mips32ElIss> > cpu0("cpu0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);

Finally do not forget to update the platform description file:

Uses('iss_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:mips32el'),

Iss v1 and XCacheWrapper example

For using the GdbServer with the legacy Iss v1 simulators (like mipsel) models, the platform description file should
contain:

Uses('vci_xcache_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:ississ2', iss2_t = 'common:mipsel'),

The topcell description (top.cpp) should contain:

soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<vci_param, soclib::common::IssIss2<soclib::common::MipsElIss> > > cache0("cache0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);

GDB Server for Soclib 1

http://www.gnu.org/software/gdb/

Connecting with a GDB client

When the simulation is running, the GDB Server listen for client connections on TCP port 2346.

$./system.x mutekh/kernel-soclib-mips.out

Its easy to connect to the simulation with a suitable gdb client:

First launch the gdb client

$ mipsel-unknown-elf-gdb mutekh/kernel-soclib-mips.out
GNU gdb 6.7
Copyright (C) 2007 Free Software Foundation, Inc.

•

Then enter this first command at the prompt

(gdb) target remote localhost:2346
Remote debugging using localhost:2346
0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>) at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99
99 {

Note that you can avoid to type this command every time: you just have to copy it in a .gdbinit file (in
the same repertory from where you are lauching gdb).

•

Processor state analysis

The processors are now frozen. Each processor is seen as a thread by the GDB client:

(gdb) info threads
 4 Thread 4 (Processor mips_iss3) 0xe010ceec in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>)
 at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99
 3 Thread 3 (Processor mips_iss2) 0xe010ce64 in lock_spin (lock=0x602002cc) at /home/diaxen/projets/mutekh/arch/soclib/include/arch/hexo/lock.h:130
 2 Thread 2 (Processor mips_iss1) 0xe010d110 in gpct_lock_HEXO_SPIN_unlock (lock=0x602061e8) at /home/diaxen/projets/mutekh/hexo/include/hexo/lock.h:134
* 1 Thread 1 (Processor mips_iss0) 0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>)
 at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99

The first processor has thread id 1. A specific processor can be selected for registers examination with the thread
command.

Note this does change processor used for single step execution though. (see advanced commands sections)

(gdb) thread 1
[Switching to thread 1 (Thread 1)]#0 0x6011d370 in sched_context_stop_unlock ()

Classical GDB debugging session takes place. Here is a register dump of the processor 0 (thread 1):

(gdb) info registers
 zero at v0 v1 a0 a1 a2 a3
 R0 00000000 0000ff00 00000001 00000000 60200338 00000001 00000000 e010e74c
 t0 t1 t2 t3 t4 t5 t6 t7
 R8 e010ef54 00000000 00000000 00000000 00000000 00000000 00000000 602021dc
 s0 s1 s2 s3 s4 s5 s6 s7
 R16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 t8 t9 k0 k1 gp sp s8 ra
 R24 00000000 00000000 00000000 602007fc 60207ff0 60205ce8 60205ce8 e0101134
 sr lo hi bad cause pc
 0000ff00 00000000 00000000 00000000 00000000 e010117c
 fsr fir
 00000000 00000000

Connecting with a GDB client 2

Running code

The following rules apply:

Managed processors begin executing code at simulation startup until a gdb client connect on port 2346.•
Processors may be forced to start in frozen state waiting for incoming gdb connection by setting the
SOCLIB_GDB environment variable to START_FROZEN.

•

All the managed processors are frozen at the same time when the gdb client prompt is displayed.•
When using the continue command, all processors resume at the same time.•
Single step execution is only performed on the processor which was interrupted. User selection of a
different processor for data examination with the thread command does not change this. (see advanced
commands section below)

•

Advanced commands

The gdb client offers a easy way to send server specific data though the monitor command. Our GdbServer takes
advantages of the monitor command to provide useful advanced features:

The processor (thread id) used for step by step execution may be forced for the next single step operation:•

(gdb) monitor stepcpu 1

The GdbServer may be instructed to break on processor exception or to let the processor jump in its
exception handler transparently. When used with an extra parameter, this setting can apply to a single
processor instead of all. The following command enables exception catching for thread id 2 (processor 1):

•

(gdb) monitor except 1 2

The gdb protocol debug mode may enabled to dump interaction between client and server:•

(gdb) monitor debug 1

More informations on using the GDB client can be found on the ?The GNU Project Debugger home page.

Running code 3

http://sourceware.org/gdb/

