
GDB Server for SoCLib
The GdbServer tool is a software debugger for !SoCLib.

Overview

The GdbServer is able to manage all processors in a !SoCLib platform. It listens for TCP connection from ?Gnu
GDB clients. Once connected, clients can be used to freeze, run, step every processor in the platform, add
breakpoints, catch exceptions and dump registers and memory content.

Implementation

The GdbServer contains no processor specific code and can be used to manage any !SoCLib processor model using
the generic Iss interface. It is implemented as an Iss wrapper class. When the GdbServer is in use, it intercepts all
events between the processor Iss model and the !SoCLib platform. This enables the GdbServer to access platform
resources as viewed from the processor without modifying platform components or processor model source code.
The GdbServer is able to freeze the wrapped processor model while the platform is still running.

In order to simplify the debug in a multi-processor context, all processors wrapped in a GdbServer will be frozen
when a breakpoint is detected in one single processor.

Usage

Adding GdbServer support to your platform

Adding the GdbServer to your topcell is easy. First include the header:

#include "gdbserver.h"

Then replace processor instantiation:

 // Without GdbServer
// soclib::caba::VciXcacheWrapper<soclib::common::Mips32ElIss> cpu0("cpu0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);
 // With GdbServer
 soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<soclib::common::Mips32ElIss> > cpu0("cpu0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);

Finally do not forget to update the platform description file:

Uses('caba:iss_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:mips32el'),

Iss v1 and XCacheWrapper example

For using the GdbServer with the legacy Iss v1 simulators (like mipsel) models, the platform description file should
contain:

Uses('caba:vci_xcache_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:ississ2', iss2_t = 'common:mipsel'),

The topcell description (top.cpp) should contain:

soclib::caba::VciXcacheWrapper<soclib::common::GdbServer<vci_param, soclib::common::IssIss2<soclib::common::MipsElIss> > > cache0("cache0", 0, maptab, IntTab(0), 1,8,4, 1,8,4);

GDB Server for SoCLib 1

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

Connecting with a GDB client

When the simulation is running, the GDB Server listen for client connections on TCP port 2346.

$./system.x mutekh/kernel-soclib-mips.out

Its easy to connect to the simulation with a suitable gdb client:

First launch the gdb client

$ mipsel-unknown-elf-gdb mutekh/kernel-soclib-mips.out
GNU gdb 6.7
Copyright (C) 2007 Free Software Foundation, Inc.

•

Then enter this first command at the prompt

(gdb) target remote localhost:2346
Remote debugging using localhost:2346
0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>) at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99
99 {

Note that you can avoid typing this command every time: you just have to copy it in a .gdbinit file in
the directory where gdb is executed.

•

Processor state analysis

The processors are now frozen. Each processor is seen as a thread by the GDB client:

(gdb) info threads
 4 Thread 4 (Processor mips_iss3) 0xe010ceec in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>)
 at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99
 3 Thread 3 (Processor mips_iss2) 0xe010ce64 in lock_spin (lock=0x602002cc) at /home/diaxen/projets/mutekh/arch/soclib/include/arch/hexo/lock.h:130
 2 Thread 2 (Processor mips_iss1) 0xe010d110 in gpct_lock_HEXO_SPIN_unlock (lock=0x602061e8) at /home/diaxen/projets/mutekh/hexo/include/hexo/lock.h:134
* 1 Thread 1 (Processor mips_iss0) 0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>)
 at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99

The first processor has thread id 1. A specific processor can be selected for registers examination with the thread
command.

Note this does change processor used for single step execution though. (see advanced commands sections)

(gdb) thread 1
[Switching to thread 1 (Thread 1)]#0 0x6011d370 in sched_context_stop_unlock ()

Classical GDB debugging session takes place. Here is a register dump of the processor 0 (thread 1):

(gdb) info registers
 zero at v0 v1 a0 a1 a2 a3
 R0 00000000 0000ff00 00000001 00000000 60200338 00000001 00000000 e010e74c
 t0 t1 t2 t3 t4 t5 t6 t7
 R8 e010ef54 00000000 00000000 00000000 00000000 00000000 00000000 602021dc
 s0 s1 s2 s3 s4 s5 s6 s7
 R16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 t8 t9 k0 k1 gp sp s8 ra
 R24 00000000 00000000 00000000 602007fc 60207ff0 60205ce8 60205ce8 e0101134
 sr lo hi bad cause pc
 0000ff00 00000000 00000000 00000000 00000000 e010117c
 fsr fir
 00000000 00000000

Connecting with a GDB client 2

Running code

The following rules apply:

Managed processors begin executing code at simulation startup until a gdb client connect on port 2346.•
Processors may be forced to start in frozen state waiting for incoming gdb connection by adding the F flag
to the SOCLIB_GDB environment variable.

•

All the managed processors are frozen at the same time when the gdb client prompt is displayed.•
When using the continue command, all processors resume at the same time.•
Single step execution is only performed on the processor which was interrupted. User selection of a
different processor for data examination with the thread command does not change this. (see advanced
commands section below)

•

Exceptions catching rules:

Processors are stopped when an exception occurs.•
The X flag can be added to the SOCLIB_GDB environment variable to globally disable exception catching.•
Some monitor commands can be used to tweak exception catching for each processors separately (see
below).

•

The S flag can be added to the SOCLIB_GDB environment variable to pause the simulation waiting for
connection when an exception is catched.

•

Advanced commands

The gdb client offers a easy way to send server specific data though the monitor command. Our GdbServer takes
advantages of the monitor command to provide useful advanced features:

The GdbServer may be instructed to dump every inter-function branch to produce a calltrace on stderr. The
set_loader function must be used on Gdb iss to enable this feature. This can be enabled globally by
adding the C flag to the SOCLIB_GDB environment variable (or the Z flag for dumping only call to
function's entrypoint); or on a per processor basis using the calltrace command:

(gdb) monitor calltrace 0 # disable for all processors
(gdb) monitor calltrace 1 2 # enable for thread 2 (processor 1)

•

The processor (thread id) used for step by step execution may be forced for the next single step operation:

(gdb) monitor stepcpu 1

•

The GdbServer may be instructed to break on processor exception or to let the processor jump in its
exception handler transparently. When used with an extra parameter, this setting can apply to a single
processor instead of all.

(gdb) monitor except 1 # enable for all processors
(gdb) monitor except 0 2 # disable for thread 2 (processor 1)

Exception catching is enabled by default but can be disabled globally by adding the X flag to the the
SOCLIB_GDB environment variable.

•

An alternative way to set hardware watch point range is provided to bypass the sometime annoying gdb
client watch point feature. It can be used to modify directly the read and write watching intervals. The
following commands set a 4 bytes (default is cpu register width) read/write watch interval at 0x12345678
and then excludes read watching for 32 bytes range at 0x12345000. These watch points will be unknown to
the gdb client and will be lost when the simulation terminates.

•

Running code 3

(gdb) monitor watch rw 0x12345678
(gdb) monitor watch -r 0x12345000 32

This kind of watch points can be added using the SOCLIB_GDB_WATCH environment variable too:

export SOCLIB_GDB_WATCH=address[,size][r][w]:...
export SOCLIB_GDB_WATCH=0x44440000,32w # write watch [0x44440000, 0x4444001f]
export SOCLIB_GDB_WATCH=0x12340000r:0x45870000rw # read watch [0x12340000, 0x12340003], rw watch [0x45870000, 0x45870003]

The W flag can be added to the the SOCLIB_GDB variable to just report watchpoint hit on stderr and avoid
stopping the simulation to be less intrusive.

The gdb protocol debug mode may be enabled to dump interaction between client and server:

(gdb) monitor debug 1

•

The gdb server almost stops the simulation process when the instrumented virtual processors are frozen.
This saves resources of the host machine during debugging sessions. However this behavior may be an
issue when freezing other platform components is not desirable (Use of multiple GDB servers with
different processors, critical I/O device latency, multi-threaded simulation...). The sleepms command
can be used to tweak the simulator sleep time between each execution cycle when the processors are in
frozen state. This value may be set to 0 to let the simulation running at full speed or to -1 to completely
stop the simulation while processors are frozen. The SOCLIB_GDB_SLEEPMS environment variable can
also be used to set this value. An integer ms value is expected. The default value is 100ms.

(gdb) monitor sleepms 10

•

Executable files can be added during simulation, so that gdb_server is aware of new symbols and is then
able to perform a correct calltrace:

(gdb) monitor load /path/to/my/file.exe

•

It can be view as the counterpart of the command "add-symbol-file" except it is done on server side (and the "load
address" can not be specified, the file is loaded according to its internal information, e.g. LMA/VMA)

Flags memo

The following flags can be concatenated in the SOCLIB_GDB environment variable (eg, $ export
SOCLIB_GDB=SZ)

F: start the simulation in a frozen state so it can be attached with a gdb client•
X: disable automatic break whenever an exception is caught, the exception handler will be called
transparently

•

S: make the simulation stop and wait for a gdb attachment whenever an exception is caught•
C: dump a trace of every inter-functions branch•
Z: same as C but display only function's entrypoint•
W: disable automatic break whenever a watchpoint is hit, just report it on stderr (the watchpoints are to be
defined in SOCLIB_GDB_WATCH)

•

More informations on using the GDB client can be found on the ?The GNU Project Debugger home page.

Advanced commands 4

http://sourceware.org/gdb/

