
Introduction
This manual describes the modeling rules for writing "cycle-accurate / bit-accurate" SystemC simulation models.
Those models can be used with the "standard" OSCI simulation engine (SystemC 2.0), but can be used also with
others simulation engines, such as SystemCASS, which is optimized for models complying with those rules.

Those modeling rules are based on the "Synchronous Communicating Finite State Machines" theory. The idea is to
force the "event driven" SystemC simulation engine to run as a cycle based simulator.

A given hardware architecture is obtained by direct instanciation of hardware modules, connected by signals. A
given architecture can contain several instances of the same module. Each module is described as one (or several)
synchronous FSM(s).

If all internal register are clearly identified, any FSM can be described by three types of functions:

The Transition function computes the next values of the register, depending on the current values of the
register and the values of the input ports signals.

•

The Moore generation function computes the values of those output port signals that depend only on the
internal registers.

•

The Mealy generation functions computes values of those output port signals that depend both on the
internal registers AND the values of the input port signals.

•

In this figure we represented a single FSM, but a SoCLib component contains generally several small FSMs
running in parallel inside a single module. This internal parallelism should be properly described.

How to write simulation models

Component's module

A SoCLib CABA component XXX is generally described as a class derived from the soclib::caba
::BaseModule class. At least two files are associated to each hardware component:

The XXX.h file describes the component interface, the internal registers, and the structural parameters.•
The XXX.cpp file contains the code of the methods associated to this component.•

Component indexation

In a VCI-based architecture, all initiators must be indexed by an index. Targets are indexes by their assigned
address space. For simplification purposes, we'll also assign an index to the targets. Index space for targets is
different from index space for initiators.

The target index is used in the routing table implemented by the interconnect components in order to choose
destination port for command packet. The initiator index is used by the interconnect components to route the
response packets.

For the initiators, the index corresponds to the VCI SRCID value.

This index can be a simple scalar index, in case of a flat interconnect, or it can be a composite index in case a
hierarchical two level interconnect where each component is identified by two indexes : (cluster_index,

How to write simulation models 1

local_index).

VCI Interface

In order to enforce interoperability between components, all SoCLib hardware components should respect the
advanced VCI interface. Any component having a VCI interface must include one of the the two following files

trunk/soclib/systemc/include/caba/interface/vci_target.h•
trunk/soclib/systemc/include/caba/interface/vci_initiator.h•

The advanced VCI signals are defined in caba/interface/vci_signals.h.

As several VCI signals can have variable widths , all VCI components must be defined with templates. The
caba/interface/vci_param.h file contains the definition of the VCI parameters object. This object must be passed as
a template parameter to the component.

Address space segmentation

In a shared memory architecture, the address space segmentation (or memory map) is a global characteristic of the
system. This memory map must be defined by the system designer, and is used by both software, and hardware
components.

Most hardware components use this memory map:

VCI interconnect components contain a « routing table » used to decode the addresses and route VCI
commands to the proper targets. This routing table is implemented as a ROM.

•

VCI target components must be able to check for segmentation violation when receiving a command
packet. Therefore, the base address and size of the segment allocated to a given VCI target must be known
by this target.

•

A cache controller supporting uncached segments must contain a cacheability table addressed by the
address MSB bits.

•

In order to simplify the memory map definition, and the hardware component configuration, a generic object, called
mapping table has been defined in common/mapping_table.h. This is an associative table of memory segments.
Any segment must be allocated to one single VCI target. The segment object is defined in common/segment.h, and
contains five attributes:

const std::string m_name; // segment's name
addr_t m_base_address; // base address
size_t m_size; // size (bytes)
IntTab m_target_index; // VCI target index
bool m_cacheability; // cacheable attribut

Any hardware component using the memory map should have a constant reference to the mapping table as
constructor argument.

Constructor arguments

Any hardware component must have an instance name, and most SoCLib component must have a VCI index.
Moreover, generic simulation models can have structural parameters, that must be defined as arguments in the
constructor. A typical VCI component will have the following constructor arguments:

VciLocks(

Component indexation 2

 sc_module_name insname,
 const soclib::common::IntTab &index,
 const soclib::common::MappingTable &mt);

In this example, the first argument is the instance name, the second argument is the VCI target index, and the third
argument is the mapping table.

Naming conventions

The following conventions are not mandatory, but can help to read the code.

All port names should be prefixed with p_•
All internal register names should be prefixed with r_•
All member variables should be prefixed with m_•

Component ressources

The component XXX.h file contains the following informations

Interface definition

A typical VCI target component will contain the following ports:

sc_in<bool> p_resetn;
sc_in<bool> p_clk;
soclib::caba::VciTarget<vci_param> p_vci;

Internal registers

All internal registers must be defined with the type sc_signal

This point is a bit tricky: It allows the model designer to benefit from the delayed update mechanism associated by
SystemC to the sc_signal type. When a single module contains several interacting FSMs, it helps to write the
Transition(), as the registers values are not updated until the exit from the transition function. Conversely, any
member variable declared with the sc_signal type is considered as a register.

In order to improve the code readability, all internal registers should be prefixed with _r.

A typical VCI target will contain the following registers :

sc_signal<int> r_vci_fsm;
sc_signal<typename vci_param::trdid_t> r_buf_trdid;
sc_signal<typename vci_param::pktid_t> r_buf_srcid;
sc_signal<typename vci_param::srcid_t> r_buf_srcid;

typename vci_param::trdid_t and others are generically-defined VCI field types.

Structural parameters

All structural parameters must be be defined as member variables. The values are generally defined by a
constructor argument. A typical SoCLib component will contain an instance name, and a reference to the segment
allocated to this component :

sc_module_name m_name;

Constructor arguments 3

const soclib::common::Segment m_segment;

Constructor & descructor

The first constructor argument must be the instance name. Other arguments can be identifiers (such as a target VCI
index or initiator VCI index). The constructor must configure some hardware ressources, such as the address
decoding ROM that exists in any VCI interconnect. An argument frequently used is a reference on the Soclib
segment table, that defines the segmentation of the system address space.

Moreover, the constructor must define the sensitivity list of the Transition,(), genMoore() and genMealy() methods,
that are described below. The sensitivity list of the Transition () method contains only the clock rising edge. The
sensitivity list of the genMoore()n method contains only the clock falling edge. The sensitivity list of the
genMealy() method contains the clock falling edge, as well as all input ports thare in the support of the Mealy
generation function.

Be careful : the constructor should NOT initialize the registers. The register initialisation must be an hardware
mechanism explicitely described in the Transition function on reset condition.

Transition() method

For each hardware component, there is only one Transition() method. It is called once per cycle, as the
sensitivity list contains only the clock rising edge. This method computes the next values of the registers (variables
that have the sc_signal type). No output port can be assigned in this method. Each register should be assigned only
once.

genMoore() method

For each hardware component, there is only one genMoore() method. It is called once per cycle, as the
sensitivity list contains only the clock falling edge. This method computes the values of the Moore output ports.
(variables that have the sc_out type) No register can be assigned in this method. Each output port can be assigned
only once. No input port can be read in this method

genMealy() method

For each hardware component, there is zero, one or several genMealy() methods (one method for each output
port). These methods can be called several times per cycle. The sensitivity list can contain several input ports. This
method computes the Mealy values of the ouput ports, using only the register values and the input ports values. No
register can be assigned in this method. Each output port can be assigned only once. This method can use automatic
variables. It can be missing if there is no Mealy output.

Structural parameters 4

