A general method for SystemC modeling of RISC
processors

Authors : Alain Greiner, Frangois Pécheux, Nicolas Pouillon

1. A) General principles

2. B) Generic ISS API

3. Q) ISS internal organisation
4. D) Generic cache controler
5. E) CABA modeling

6. F) TLM-T modeling

The goal of the method presented here is to simplify the SystemC modeling of a specific class of embedded
processors : The method is well suited to 32 bits RISC processors, with one single instruction issue per cycle, and
blocking instruction and data caches.

A) General principles

The method relies on three basic principles :

® The processor core is modeled as a generic ISS (Instruction Set Simulator).

¢ This ISS is wrapped in apropriate wrappers for several types of simulation models : CABA, TLM-T and
PV.

¢ All processors types use the same generic cache controler.

On one hand, the same ISS is encapsulated in different wrappers to generate several simulation models,
corresponding to several abstraction levels: CABA (Cycle-Accurate Bit-Accurate), TLM-T (Transaction Level
Models with Time), and PV (Programmer View, untimed). On the other hand, it is possible to use the same wrapper
for different types of processor architectures. As illustrated below, all simulation models can be obtained as the
cartesian product of the ISS set, by the wrappers set.

CABA Wrapper TLM-T Wrapper PV Wrapper
ISS MIPSR3000 CABA Model MIPS TLM-T Model MIPS PV Model MIPS
ISS PPC405 CABA Model PPC TLM-T Model PPC PV Model PPC

ISS OpenRISC CABA Model OpenRISC TLM-T Model OpenRISC PV Model OpenRISC

The method has been demonstrated for the MIPSR3000 and PPC 405 processors, and can be simply extended to the
OpenRISC, Sparc, Nios, and MicroBLAZE processors.

This modeling approach supposes that all ISS implement the same generic API (Application Specific Interface), as
this API must be independant from both the procesor architecture, and the wrapper type.

The proposed method makes the assumption that the processors use the VeIXcache cache controler available in the
SoCLib library to interface the VCI interconnect. Such modular approach allows to share the modeling effort of the
L1 cache controler. The functionnal validation and debug of this component has been a tedious task, and such reuse
is probably a good policy. Nevertheless, a clean procedural interface has been defined between the processor core,
and the cache controler, and the cache behaviour can be easily modified if required.

Finally this generic approach has been exploited to develop the gdbServer module that is mandatory to help the

debug of the multi-tasks application software running on the MP-SoC architectures modeled with SoCLib. This tool
can be used for all simulation models compliant with the method described below.

A) General principles 1

B) Generic ISS API

As explained in the introduction, the modeling method relies on a generic ISS API, usable by any 32 bits RISC
processor, and by the three wrappers CABA, TLM-T & PV. The Instruction Set Simulator corresponding to a given
processor handles a set of registers definning the processor internal state. The API described below defines a
procedural interface to allows the various wrappers to access those registers. The main access function is the step()
function, that executes one ISS step : For an untimed model (PV wrapper) one step corresponds to one instruction.
For a timed model (CABA wrapper or TLM-T wrapper), one step corresponds to one cycle.

¢ inline void reset()
This function reset all registers defining the processor internal state.

¢ inline bool isBusy()
This function is only used by timed wrappers (CABA & TLM-T). In RISC processors, most instructions have a
visible latency of one cycle. But some instructions (such as multiplication or division) can have a visible latency
larger than one cycle. This function is called by the CABA and TLM-T wrappers before executing one step : If the
processor is busy, the wrapper calls the nullStep() function. If the processor is available, the wrapper may call the
step() function to execute one instruction.

¢ inline void step()
This function executes one instruction. All processor internal registers can be modified.

¢ inline void nullStep()
This function performs one internal step of a long instruction.

¢ inline void getInstructionRequest (bool & req , enum InsAccessType & type, uint32_t & address)
This function is used by the wrapper to obtain from the ISS the instruction request parameters. The req parameter is
true when there is a valid request. The address parameter is the instruction address. The type parameter can have

the values defined below:

enum InsAccessType {
RC , // Read Instruction Cached
RU , // Read Instruction Uncached
}

¢ inline void getDataRequest (bool &req , enum DataAccessType & type, uint32_t & address, uint32_t
& wdata)

This function is used by the wrapper to obtain from the ISS the data request parameters. The req parameter is true
when there is a valid request. The address parameter is the data address, and the wdata parameter is the data value
to be written. The type parameter is defined below :

enum DataAccessType {

RW , // Read Word Cached
RH , // Read Half Cached
RB , // Read Byte Cached
RZ // Cache Line Invalidate

r
WW , // Write Word
WH , // Write Half
WB , // Write Byte

B) Generic ISS API 2

SC , // Store Conditional Word
LL , // Load Linked Word

¢ inline void setInstruction (bool error, uint32_t ins)

This function is used by the wrapper to transmit to the ISS, the instruction to be executed (ins parameter). In case of
exception (bus error), the error parameter is set.

¢ inline void setDataResponse (bool error, uint32_t rdata)

This function is used by the wrapper to transmit to the ISS, the response to the data request. In case of a read
request, the rdata parameter contains the read value. In case of exception (bus error), the error parameter is set. In
any case, this function must reset the ISS data request.

¢ inline void setWriteBerr ()

This function is used by the wrapper to signal asynchronous bus errors, in case of a write acces, that is non blocking
for the processor.

¢ inline void setIrq (uint32_t irq)

This function is used by the wrapper to signal the current value of the interrupt lines. For each processor, the
number of interrupt lines must be defined by the ISS variable n_irq.

C) ISS internal organisation

As an example, we present the general structure of the MIPS R3000 ISS (chronogram of figure 1). The instruction
fetch, instruction decode, and instruction execution are done in one cycle. A specific register r_npc is introduced to
model the delayed branch mechanism : the instruction following a branch instruction is always executed. The load
instructions are executed in two cycles, as those instructions require two cache access (one for the instruction, one
for the data). The ISS can issue two simultaneous request for the instruction cache, and the data cache, but those
requests are done for different instructions.

0

The r_pc et r_npc registers contain respectively the current instruction address, and the next instruction address.
The wrapper can obtain the PC content using the getInstructionRequest() function, fetch the instruction in the
cache (or in memory in case of MISS), and propagate the requested intruction to the ISS using the setInstruction()
function. The wrapper starts the instruction execution using the step() function. The general registers r_gp, as well
as the r_mem registers defining the possible data access, are modified. If, at the end of cycle (i) the r-mem
registers contain a valid data access, this access will be performed during the next cycle, in parallel with the
execution of instruction executed at cycle (i+1).

From an implementation point of view, a specific ISS is implemented by a class processorlIss. This class inherits

the class genericlss, that defines the prototypes of the access function presented in section B, (defined as virtual
functions).

D) Generic cache controler

The hardware component VciXcache is a generic cache controler, that can be used by various processor cores. It
contains two separated instruction and data caches, but has a single VCI port to acces the VCI interconnect. The
cache line width, and the cache size are defined as independant parameters for the data cache and the instruction

D) Generic cache controler 3

cache. On the processor side, the cache controler can receive two requests at each cycle : one instruction request
(read only), and one data request (read or write). Those requests, and the corresponding responses are transmited
through a normalised interface described below. Both instruction and data caches are blocking : the processor is
supposed to be frozen in case of MISS (uncached read acces are handled as MISS). Both caches are direct mapping,
and the write policy for the data cache is WRITE-THROUGH. The cache controler contains a write buffer
supporting up to 8 fposted write requests. In case of successive write requests to contiguous addresses, the cache
controler will build a single VCI burst. Therefore, the procesor can be blocked in case of MISS on a read request,
but is generally not blocked in case of write request. Finally, in order to garanty a strong ordering memory
consistency, the ???VciXcache??? controler sequencialize the memory accesses, strictly respecting the access
ordering defined by the processor on the VciXcache interface. As the VCI interconnect does not garanty the in
order delivery property, the cache controler waits the VCI response packet corresponding to transaction (n) before
sending the VCI command packet corresponding to transaction (n+1).

To communicate with the processor, the CABA model of the VciXcache component contains two ports defined
below :

class IcacheCachePort {
sc_in<bool> req; // valid request
sc_in<sc_dt::sc_uint<2> > type ; // instruction access type
sc_in<sc_dt::sc_uint<32> > adr; // instruction address
sc_out<bool> frz ; // frozen processor
sc_out<sc_dt::sc_uint<32> > ins; // instruction
sc_out<bool> berr; // bus error

}

class DcacheCachePort {
sc_in<bool> req; // valid request

sc_in<sc_dt::sc_uint<4> > type ; // data access type
sc_in<sc_dt::sc_uint<32> > adr; // data address
sc_in<sc_dt::sc_uint<32> > wdata; // data to be written

sc_out<bool> frz ; // frozen processor
sc_out<sc_dt::sc_uint<32> > rdata; // read data
sc_out<bool> berr; // bus error

E) CABA modeling

The CABA modeling for a complete CPU (processor + cache) is presented in figure 2. The processor ISS is
wrapped in the generic CABA wrapper, implemented by the class IssWrapper.. The class IssWrapper contains
the member variable m_iss representing the processor ISS. The type of the m_iss variable - defining the type of the
wrapped processor - is specified by the template parameter iss_t. The class IssWrapper inherit the class
caba::ModuleBase, that is the basis for all CABA modules.

0

To communicate with the VciXcache, the IssWrapper class contains two member variables p_icache, of type
IcacheProcessorPort and p_dcache, of type DcacheProcessorPort. It contains also the member variable p_irq,
that is a pointer to an array of ports of type sc_in<bool>. This array represents the interrupt ports. The number N of
interrupt ports depends on the wrapped processor, an is defined by the n_irq member variable of the iss_t class.

The SystemC code for the generic CABA wrapper is presented below :

template<typename iss_t>
class IssWrapper : Caba::BaseModule

{

public :

E) CABA modeling 4

///1///// poxrts [////////
sc_in<bool> “*p_irqg ;
IcacheProcessorPort p_icache ;
DcacheProcessorPort p_dcache ;
sc_in<bool> p_resetn ;
sc_in<bool> p_clk ;

///////// constructor ///////////
IssWrapper (sc_module_name insname,
int ident)
BaseModule (insname),
m_iss (ident)
{
p_icache ("icache")
p_dcache ("dcache")
p_resetn("resetn")
p_clk("clk") ;
for (uint32_t i = 0 ; i < iss_t::n_irqg ; i++) {
new (&p_1irqg[i]) sc_in<bool> ("irg", i) ;
}
m_ins_asked = false ;
m_data_asked = false ;
SC_METHOD (transition);
dont_initialize();
sensitive << p_clk.pos();
SC_METHOD (genMoore) ;
dont_initialize();
sensitive << p_clk.neg();

}
private

11777771777

iss_t m_iss ;

/11777777077 7777777777777

void transition ()
{
bool ifrz = p_icache.frz.read() ;
bool ireqg p_icache.req.read() ;
bool iberr = p_icache.berr.read() ;

bool dfrz = p_dcache.frz.read() ;
bool dberr = p_dcache.berr.read() ;
bool dreqg = p_dcache.reqg.read() ;

if (! p_resetn.read()) {
m_iss.reset ();
return;
}
if (ireq) m_iss.setInstruction(iberr, p_icache.ins.read()) ;
if (dberr && (!dreq || dfrz)) {
m_iss.setWriteBerr () ;
} else if (dreqg) {
m_iss.setDataResponse(dberr, p_dcache.rdata.read()) ;
}
if (m_iss.isBusy () || ifrz || dfrz) { // Processor frozen or busy
m_iss.nullStep();
} else { // Execute one instruction:

m_iss.step();
}
// report interrupts
uint32_t irqgword = O;
for (size_t 1=0; i<(size_t)iss_t::n_irqg; i++) { 1f (p_irg[i].read()) irgword |= (1l<<i); }

E) CABA modeling 5

m_iss.setIrg(irqword);
} // end transition|()

[/177777 77777077777 77777777777
void genMoore ()
{
bool ins_req ;
enum InsAccessType ins_type ;
uint32_t ins_address ;
bool data_req ;
enum DataAccessType data_type ;
uint32_t data_address ;
uint32_t data_wdata ;

m_iss.getDataRequest (data_req, data_type, data_address, data_wdata) ;
m_iss.getInstructionRequest (ins_req, ins_type, ins_address) ;

m_ins_asked = ins_req ;
m_data_asket = data_req ;

p_icache.req = ins_req ;
p_icache.type = ins_type ;
p_icache.adr = ins_address;
p_dcache_reqg data_req ;
p_dcache_type = data_type ;
p_dcache.adr = data_address;
p_dcache.wdata = data_wdata;
} // end genMoore

F) TLM-T modeling

The TLM-T modeling for a complete CPU (processor + cache) is presented in figure 3. To increase the simulation
speed, the TLM-T wrapper is the cache controller itself, and it is implemented as the class VciXcache. This class
contains the SC_THREAD execLoop() implementing the PDES process, and the m_time member variable
implementing the associated local clock. The class VciXcache inherit the class timt::ModuleBase, that is the basis
for all TLM-T modules. This class contains the member variable m_iss representing the processor ISS. The type of
the m_iss variable is defined by the template parameter iss_t.

0

The class VciXcache contain a member variable p_vci, of type VcilnitPort, to send VCI command packets, and
receive VCI response packets. This class contains also the member variable p_irq, that is a pointer to an array of
ports of type SynchroInPort. This array represents the interrupt ports. The number N of interrupt ports depends on
the wrapped processor, an is defined by the n_irq member variable of the iss_t class.

The execLoop() function contains an infinite loop. One iteration in this loop corresponds to one cycle for the local
clock, (or more, as the thread is suspended in case of MISS).

The cache behavior is specifically described by the cacheAccess() method, that is a member function of the class
VciXcache, and is called by execLoop() at each cycle. This function has the following prototype :

void cacheAccess (icache_request_t *ireq,
dcache_request_t *dreq,
xcache_response_t *rsp)

The icache_request_t, dcache_request_t, and xcache_response_t classes represent the instruction and data
requests, and the cache response respectively :

F) TLM-T modeling 6

class icache_request_t {
bool wvalid ;

enum InsAccessType type ;
uint32_t address ;

}

class dcache_request_t {
bool wvalid ;

enum DataAccessType type ;
uint32_t address ;
uint32_t wdata ;

}

class xcache_response_t {
bool iber ;

uint32_t instruction ;
bool dber ;

uint32_t rdata ;

}

The cacheAccess() function détermines the actions to be done :

¢ In case of data or instruction MISS, the cacheAccess() function sends the proper VCI command packet on
the p_vci port, and the exedcLoop() thread is suspended.

¢ In case of data write, the the cacheAccess() function sends the proper VCI command packet on the p_vci
port, but the exedcLoop() thread is not suspended.

At each iteration in the execution loop, the cacheAccess() method updates the local clock (variable m_time) :

® The local time is simply incremented by one cycle, if the cache controller is able to answer immediately to
the processor requests.
® The local time is updated using the date contained in the VCI response packet in case of MISS.

The SystemC TLM-T model for the VciXcache module is presented below :

template<typename iss_t, typename vci_param>
class VciXcache<iss_t> : tlmt::BaseModule {

public

/////// poxrts ///////
VciInitiatorPort<vci_param> p_vci ;
SynchroInPort * p_irqg ;

/////// constructor /////
VciXcache (sc_module_name name,
uint32_t initiatorIndex,
uint32_t processorldent,
uint32_t lookahead,
uint32_t dcache_nlines,
uint32_t dcache_nwords,
uint32_t icache_nlines,
uint32_t icache_nwords)
BaseModule (name),
m_iss (processorIdent),
m_time (0)
{

p_vci(« vci », this, &VciXcache::rspReceived, &m_time) ,

for (uint32_t i = 0 ; i < iss_t::n_irqg ; i++) {
new (&p_1irqg[i]) SynchroInPort ("irqg", i, this, &VciXcache::irqgReceived) ;
}
m_initiator_index = initiatorIndex ;
m_counter = 0 ;
m_lookahead = lookahead ;
m_icache_nlines = icache_nlines ;

F) TLM-T modeling

mi_icache_nwords = icache_nwords ;
m_dcache_nlines = dcache_nlines ;
m_dcache_nwords = dcache_nwords ;
SC_THREAD (execLoop) ;

} // end constructor

private
/////// member variables
tlmt_time m_time ;
sc_event m_rsp_received ;
iss_t m_iss ;
uint32_t m_rsp_error ;
uint32_t m_dcache_nlines ;
uint32_t m_dcache_nwords ;
uint32_t m_icache_nlines ;
uint32_t m_icache_nwords ;
uint32_t m_initiator_index ;
uint32_t m_lookahead ;
uint32_t m_counter ;
bool m_irgpendingliss_t;;n_irq]l;
uint32_t m_irgtime[iss_t::n_irqgl ;
vci_cmd_t m_cmd ;
//177/77/77/7/7/7/// thread
void execLoop ()
{
icache_request_t icache_req ; // The Icache request
dcache_request_t dcache_req ; // The Dcache request
xcache_response_t xcache_rsp ; // The Xcache response
uint32_t irqgword ;
while (1) {
// execute one cycle
if (m_iss.isBusy () {
m_iss.nullStep() ;
} else {
/////////// cache access
m_iss.getInstructionRequest (icache_req.valid,
icache_req.type,
icache_reqg.address) ;
m_iss.getDataRequest (dcache_reqg.valid,
dcache_req.type,
dcache_reqg.address,
dcache_reqg.wdata)
xcacheAccess (&icache_req, &dcache_req, &xcache_rsp) ;

if (icache_reqg.valid) m_iss.setInstruction (xcache_rsp.iber, xcache_rsp.instructior
if (dcache_reg.valid) m_iss.setDataResponse (xcache_rsp.dber, xcache_rsp.rdata)

//////// handling interrupts

irgword = 0 ;

for (size_t i =0 ; 1 < iss_t ::n_irqg ; i++) {
if(m_irgpending[i] && m_irgtime[i] <= get_time()) irqgword |[=
}

m_iss.setIrg(irgqword) ;

///////// handling asynchronous bus error

if (m_write_error) {
setWriteBerr () ;
m_write_error = false ;

}

m_iss.step() ;

} // end cycle
// lookahead management
m_counter++ ;
if (m_counter >= m_lookahead) {
m_counter = 0 ;
wait (SC_ZERO_TIME) ;
} // end if lookahead
} // end while(1)
} // end execLoop ()

F) TLM-T modeling

[117777177777770777777777777777777777777777777777777777

void cacheAccess (icache_request_t ireq,
dcache_request_t dreq,
xcache_response_t rsp)

{
} // end cacheAccess ()

111777777777 7777777777777777
void rspReceived(vci_rsp_t rsp,
uint32_t time)
{
if (rsp.cmd == VCI_CMD_write) { // asynchronous bus error signaling
m_write_error = (rsp.error != 0) ;
}
if (rsp.cmd == VCI_CMD_READ) { // time update & cache activation
m_time.updateTime(time + rsp.length) ;
notify(m_rsp_received) ;
}
} // end rspReceived()

111777777777 7777777777777777
void irgReceived(bool val,
uint32_t time
size_t index)
{
m_irgpending[index] = val ;
m_irgtime[p_irg[index] = time ;
} // end irgReceived()
} // end class VciXcache

F) TLM-T modeling

