
Writing efficient TLM-T SystemC simulation models
for SoCLib
Authors : Alain Greiner, François Pêcheux, Emmanuel Viaud, Nicolas Pouillon

A) Introduction1.
B) Single VCI initiator and single VCI target2.
C) VCI initiator Modeling

C.1) Sending a VCI command packet1.
C.2) Receiving a VCI response packet2.
C.3) Initiator Constructor3.
C.4) Lookahead parameter4.
C.4) VCI initiator example5.

3.

D) VCI target modeling
D.1) Receiving a VCI command packet1.
D.2) Sending a VCI response packet2.
D.3) Target Constructor3.
D.4) VCI target example4.

4.

E) VCI Interconnect
E.1) Generic network modeling1.
E.2) VCI initiators and targets synchronizations2.

5.

F) Interrupt modeling
F.1) Source modeling1.
F.2) Destination modeling2.
F.3) Processor with interrupt example3.

6.

A) Introduction
This document is under development.

This new document describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib. This
is the second release, as the modeling rules have been modified to respect the TLM2.0 standard.

In TLM2.0, both the payload (defining the actual content of the exchanged packets), and the phase (defining the
actual communication protocol steps) are template parameters. Therefore, specific payload and phase types have
been defined for SoCLib. Those types are well suited for the VCI/OCP protocol, but they more general and can
used to describe any shared-memory architecture using routed network on chip. The TLM-T rules used in SoCLib
enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the simulation
has its own local time, and PDES processes synchronize through messages piggybacked with time information.
Models complying to these rules can be used with the "standard" OSCI simulation engine (SystemC 2.x), but can
also be used also with others simulation engines, especially distributed, parallelized simulation engines.

Before writing a new model, it is useful to have a look at the general SoCLib rules.

B) Single VCI initiator and single VCI target
Figure 1 presents a minimal system containing one single initiator, VciSimpleInitiator , and one single target,
VciSimpleTarget . The VciSimpleInitiator module behavior is modeled by the SC_THREAD execLoop(), that
contains an infinite loop.

B) Single VCI initiator and single VCI target 1

Unlike the initiator, the target module has a purely reactive behaviour and there is no need to use a SC_THREAD :
The target behaviour is entirely described by the call-back function, that is executed in the context of the
execLoop() thread when a VCI command packet is received by the target module.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels: one to transmit the VCI command packet, one to transmit the VCI response packet.

C) VCI initiator Modeling
In the proposed example, the initiator module is modeled by the VciSimpleInitiator class. This class inherits from
the soclib::tlmt::BaseModule class, that acts as the root class for all TLM-T modules. The process time, as well as
other useful process attributes, is contained in a C++ structure called a tlmt_core::tlmt_thread_context. As there
is only one thread in this module, there is only one member variable c0 of type tlmt_core::tlmt_thread_context.
c0 mostly contains the PDES process local time (H on the figure). In all the TLM-T models, time is handled by the
tlmt_core::tlmt_time class. In order to get the time associated to the initiator process, one should use the getter
function time() on the c0 object, and should use the setter functions set_time() and update_time() to assign a new
time to the PDES process.

The execLoop() method, describing the initiator behaviour must be declared as a member function of the
VciSimpleInitiator class.

Finally, the class VciSimpleInitiator must contain a member variable p_vci, of type VciInitiator. This object has
a template parameter <vci_param> defining the widths of the VCI ADDRESS and DATA fields.

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the send() method, that is a member function of
the p_vci port. The prototype is the following:

void send(soclib::tlmt::vci_cmd_packet<vci_param> *cmd, // pointer to a VCI command packet
 tlmt_core::tlmt_time time); // initiator local time

The contents of a VCI command packet is defined below:

template<typename vci_param>
class vci_cmd_packet
{
public:
 typename vci_param::cmd_t cmd; // VCI transaction type
 typename vci_param::addr_t address; // address on the target side
 uint32_t int be; // byte_enable value (same value for all packet words)
 bool contig; // contiguous addresses (when true)
 typename vci_param::data_t *buf; // pointer to the local buffer on the initiator
 size_t nwords; // number of words in the packet
 uint32_t srcid; // VCI Source ID
 uint32_t trdid; // VCI Thread ID
 uint32_t pktid; // VCI Packet ID
};

The possible values for the cmd filed are vci_param::CMD_READ, vci_param::CMD_WRITE,
vci_param::CMD_READ_LOCKED, and vci_param::CMD_STORE_COND. The contig field can be used for
optimization.

The send() function is non-blocking. To implement a blocking transaction (such as a cache line read, where the
processor is frozen during the VCI transaction), the model designer must use the SystemC sc_core::wait(x)

C) VCI initiator Modeling 2

primitive (x being of type sc_core::sc_event): the execLoop() thread is then suspended, and will be reactivated
when the response packet is actually received.

C.2) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class
VciSimpleInitiator. This call-back function (named rspReceived() in the example), must be declared in the
VciSimpleInitiator class and is executed each time a VCI response packet is received on the p_vci port. The
function name is not constrained, but the arguments must respect the following prototype:

tlmt_core::tlmt_return &rspReceived(soclib::tlmt::vci_rsp_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data);

The contents of a VCI response packet is defined below:

template<typename vci_param>
class vci_rsp_packet
{
public:
 typename vci_param::cmd_t cmd; // VCI transaction type
 size_t nwords; // number of words in the packet
 uint32_t error; // error code (0 if no error)
 uint32_t srcid; // VCI Source ID
 uint32_t trdid; // VCI Thread ID
 uint32_t pktid; // VCI Packet ID
};

The second parameter, time, is of type tlmt_core::tlmt_time and corresponds to the time of the response. The third
parameter, private_data has a default value of NULL and is not used when transmitting or receiving VCI packets.

The actions executed by the call-back function depend on the response transaction type (cmd field), as well as the
pktid and trdid fields.

In the proposed example :

In case of of a blocking read , the call-back function updates the local time, and reactivates the suspended
thread.

•

In case of a non-blocking write, the call-back function does nothing.•

C.3) Initiator Constructor

The constructor of the class VciSimpleInitiator must initialize all the member variables, including the p_vci port.
The rspReceived() call-back function being executed in the context of the thread sending the response packet, a
link between the p_vci port and the call-back function must be established. Moreover, the p_vci port must contain a
pointer to the initiator thread context c0. This allows the target to get information on the initiator that actually sends
VCI packets (the initiator local time, the initiator activity, etc).

The VciInitiator constructor for the p_vci_ object must be called with the following arguments:

p_vci("vci", new tlmt_core::tlmt_callback<VciSimpleInitiator,soclib::tlmt::vci_rsp_packet<vci_param> *>(
 this, &VciSimpleInitiator<vci_param>::rspReceived), &c0)

C.1) Sending a VCI command packet 3

C.4) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after at some point, in order to allow the other threads to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches).

To solve this issue, it is necessary to define -for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it is automatically stopped. The
lookahead parameter allows the system designer to bound the de-synchronization time interval between threads.

A small value for this parameter results in a better timing accuracy for the simulation, but implies a larger number
of context switches, and a slower simulation speed.

C.4) VCI initiator example
////////////////////////// vci_simple_initiator.h ////////////////////////////////

#ifndef VCI_SIMPLE_INITIATOR_H
#define VCI_SIMPLE_INITIATOR_H

#include <tlmt>
#include "tlmt_base_module.h"
#include "vci_ports.h"

namespace soclib { namespace tlmt {

template<typename vci_param>
class VciSimpleInitiator
 : public soclib::tlmt::BaseModule
{
 tlmt_core::tlmt_thread_context c0;
 sc_core::sc_event m_rsp_received;
 tlmt_core::tlmt_return m_return;
 soclib::tlmt::vci_cmd_packet<vci_param> cmd;

 uint32_t addresses[8]; // address table,
 uint32_t localbuf[8]; // local buffer

 uint32_t m_counter; // iteration counter
 uint32_t m_lookahead; // lookahead value
 uint32_t m_index; // initiator index

protected:
 SC_HAS_PROCESS(VciSimpleInitiator);

public:
 soclib::tlmt::VciInitiator<vci_param> p_vci;

 VciSimpleInitiator(sc_core::sc_module_name name,
 uint32_t initiator index,
 uint32_t lookahead);

 tlmt_core::tlmt_return &rspReceived(soclib::tlmt::vci_rsp_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data);
 void behavior();
};

}}

C.4) Lookahead parameter 4

#endif

////////////////////////// vci_simple_initiator.cpp ////////////////////////////////

#include "../include/vci_simple_initiator.h"

namespace soclib { namespace tlmt {

#define tmpl(x) template<typename vci_param> x VciSimpleInitiator<vci_param>

tmpl(tlmt_core::tlmt_return&)::rspReceived(soclib::tlmt::vci_rsp_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data)
{
 if(pkt->cmd == vci_param::VCI_CMD_READ) {
 c0.set_time(time + tlmt_core::tlmt_time(pkt->length));
 m_rsp_received.notify(sc_core::SC_ZERO_TIME) ;
 }
 return m_return;
}

tmpl(void)::behavior()
{

 for(;;) {

 // sending a read VCI packet

 cmd.cmd = vci_param::CMD_READ; // a VCI read packet
 addresses[0] = 0xBFC00000; // the start address
 cmd.address = addresses; // assigned
 cmd.be = 0xF; // reading full words
 cmd.contig = true; // at successive addresses
 cmd.buf = localbuf; // storing the read results in localbuf
 cmd.length = 8; // packet of 8 words
 cmd.srcid = 0; // srcid=0
 cmd.trdid = 0; // trdid=0
 cmd.pktid = 0; // pktid=0

 tlmt_core::tlmt_return ret; // in case a test on the send function is needed
 ret = p_vci.send(&cmd, c0.time()); // sending the packet
 sc_core::wait(m_rsp_received); // and waiting for the response packet

 // sending a write VCI packet

 localbuf[0]=0x00112233; // first, fill the write local buffer with write data

 cmd.cmd = vci_param::CMD_WRITE; // then issue the VCI write packet
 addresses[0] = 0x10000000; // starting with this address
 cmd.address = addresses;
 cmd.be = 0xF;
 cmd.contig = 0;
 cmd.buf = localbuf;
 cmd.length = 1;
 cmd.srcid = 0;
 cmd.trdid = 0;
 cmd.pktid = 0;

 ret = p_vci.send(&cmd, c0.time()); // Don't wait for the answer

 // lookahead management
 m_counter++ ;
 if (m_counter >= m_lookahead) {
 m_counter = 0 ;
 sc_core::wait(sc_core::SC_ZERO_TIME) ;
 } // end if

C.4) VCI initiator example 5

 // process time= process time+1
 c0.set_time(c0.time()+tlmt_core::tlmt_time(1)) ;

 }
}

tmpl(/**/)::VciSimpleInitiator(sc_core::sc_module_name name,
 uint32_t initiator index,
 uint32_t lookahead)
 : soclib::tlmt::BaseModule(name),
 m_index(initiator_index),
 m_lookahead(lookahead),
 m_counter(0),
 p_vci("vci", new tlmt_core::tlmt_callback<VciSimpleInitiator,soclib::tlmt::vci_rsp_packet<vci_param> *>(
 this, &VciSimpleInitiator<vci_param>::rspReceived), &c0)
{
 SC_THREAD(behavior);
}

}}

D) VCI target modeling
In the proposed example, the target handles two types of command: a read burst of 8 words, and a write burst of 8
words. To simplify the model, there is no error management.

The class VciSimpleTarget inherits from the class BaseModule. The class VciSimpleTarget contains a member
variable p_vci of type VciTarget. This object has a template parameter <vci_param> defining the widths of the
VCI ADDRESS and DATA fields.

D.1) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
VciSimpleTarget. This call-back function (named cmdReceived() in the example), will be executed each time a
VCI command packet is received on the p_vci port. The function name is not constrained, but the arguments must
respect the following prototype:

tlmt_core::tlmt_return &cmdReceived(soclib::tlmt::vci_cmd_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data);

For the read and write transactions, the actual data transfer is performed by this cmdReceived() function. To avoid
multiple data copies, only the pointer on the initiator data buffer is transported in the VCI command packet (source
buffer for a write transaction, or destination buffer for a read transaction).

D.2) Sending a VCI response packet

To send a VCI response packet the cmdReceived() function must use the send() method, that is a member function
of the class VciTarget, and has the following prototype:

void send(soclib::tlmt::vci_rsp_packet<vci_param> *rsp, // pointer to a VCI response packet
 tlmt_core::tlmt_time time); // initiator local time

For a reactive target, the response packet time is computed as the command packet time plus the target intrinsic
latency.

D) VCI target modeling 6

D.3) Target Constructor

The constructor of the class VciSimpleTarget must initialize all the member variables, including the p_vci port.
The cmdReceived() call-back function being executed in the context of the thread sending the command packet, a
link between the p_vci port and the call-back function must be established. The VciTarget constructor must be
called with the following arguments:

p_vci("vci", new tlmt_core::tlmt_callback<VciSimpleTarget,soclib::tlmt::vci_cmd_packet<vci_param> *>(
 this, &VciSimpleTarget<vci_param>::cmdReceived))

D.4) VCI target example
////////////////////////// vci_simple_target.h ////////////////////////////////

#ifndef VCI_SIMPLE_TARGET_H
#define VCI_SIMPLE_TARGET_H

#include <tlmt>
#include "tlmt_base_module.h"
#include "vci_ports.h"

namespace soclib { namespace tlmt {

template<typename vci_param>
class VciSimpleTarget
 : public soclib::tlmt::BaseModule
{
private:
 tlmt_core::tlmt_return m_return;
 uint32_t m_index;
 uint32_t m_latency;
 soclib::tlmt::vci_rsp_packet<vci_param> rsp;

public:
 soclib::tlmt::VciTarget<vci_param> p_vci;

 VciSimpleTarget(sc_core::sc_module_name name,
 uint32_t targetIndex,
 uint32_t latency);

 tlmt_core::tlmt_return &cmdReceived(soclib::tlmt::vci_cmd_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data);
};

}}

#endif

////////////////////////// vci_simple_target.cpp ////////////////////////////////

#include "../include/vci_simple_target.h"

namespace soclib { namespace tlmt {

#define tmpl(x) template<typename vci_param> x VciSimpleTarget<vci_param>

tmpl(tlmt_core::tlmt_return&)::cmdReceived(soclib::tlmt::vci_cmd_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data)
{
 uint32_t m_data[128];

D.3) Target Constructor 7

 if(pkt->cmd == vci_param::VCI_CMD_WRITE) {
 for(int i = 0 ; i < pkt->length ; i++)
 m_data[i] = cmd->buf[i];
 }
 if(pkt->cmd == vci_param::VCI_CMD_READ) {
 for(int i = 0 ; i < pkt->length ; i++)
 cmd->buf[i] = m_data[i];
 }
 rsp.srcid = pkt->srcid;
 rsp.trdid = pkt->trdid;
 rsp.pktid = pkt->pktid;
 rsp.length = pkt->length;
 rsp.error = 0;
 p_vci.send(&m_rsp, time+tlmt_core::tlmt_time(latency+pkt->length)) ;
 m_return.time=time+tlmt_core::tlmt_time(latency+pkt->length;
 return (m_return);
}

tmpl(/**/)::VciSimpleTarget(sc_core::sc_module_name name,
 uint32_t targetIndex,
 uint32_t latency)
 : soclib::tlmt::BaseModule(name),
 m_index(targetIndex),
 m_latency(latency),
 p_vci("vci", new tlmt_core::tlmt_callback<VciSimpleTarget,soclib::tlmt::vci_cmd_packet<vci_param> *>(
 this, &VciSimpleTarget<vci_param>::cmdReceived))
{
}

}}

E) VCI Interconnect
The VCI interconnect used for the TLM-T simulation is a generic simulation model, named VciVgmn. The two
main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the
network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled
as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts
can appear at any intermediate switch. In the VciVgmn network described in Figure 2.b, conflicts can only happen
at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

E.1) Generic network modeling

There is actually two fully independent networks for VCI command packets and VCI response
packets. There is a routing function for each input port, and an arbitration function for each output
port, but the two networks are not symmetrical :

For the command network, the arbitration policy is distributed: there is one arbitration thread for each
output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a
SC_THREAD, and contains a local clock.

•

For the response network, there are no conflicts, and there is no need for arbitration. Therefore, there is no
thread (and no local time) and the response network is implemented by simple function calls.

•

E) VCI Interconnect 8

This is illustrated in Figure 3 for a network with 2 initiators and three targets :

E.2) VCI initiators and targets synchronizations

As described in sections B & C, each VCI initiator TLM-T module contains a thread and a local clock. But, in order
to increase the TLM-T simulation speed, the VCI targets are generally described as reactive call-back functions.
Therefore, there is no thread, and no local clock in the TLM-T module describing a VCI target. For a VCI target,
the local clock is actually the clock associated to the corresponding arbitration thread contained in the VciVgmn
module.

As described in Figure 4, when a VCI command packet - sent by the corresponding arbitration thread - is received
by a VCI target, two synchronization mechanisms are activated :

The cmdReceived() function sends a VCI response packet with an associated time to the source initiator,
through the VciVgmn response network. The corresponding time can be used to update the initiator local
clock.

•

The cmdReceived() function returns a time to the arbitration thread. This time is used to update the
arbitration thread local clock.

•

F) Interrupt modeling
Interrupts are asynchronous events that are not carried by the VCI network.

As illustrated in Figure 5, each interrupt line is modeled by a specific point to point, uni-directional channel. This
channel uses two ports of type tlmt_core::tlmt_out<bool> and tlmt_core::tlmt_in<bool> that must be declared
as member variables of the source and destination modules respectively.

F.1) Source modeling

The source module (named VciSimpleSourceInterrupt in this example) must contain a member variable p_irq of
type tlmt_core::tlmt_out<bool>. To activate, or desactivate an interruption, the source module must use the
send() method, that is a member function of the tlmt_core::tlmt_out<bool> class. These interrupt packets
transport both a Boolean, and a time. The send() prototype is defined as follows :

void send(bool val, const tlmt_core::tlmt_time &time)

F.2) Destination modeling

The destination module (named here VciProcessor) must contain a member variable p_irq of type
tlmt_core::tlmt_in<bool>, and a call-back function (named here irqReceived() that is executed when an interrupt
packet is received on the p_irq port.

A link between the p_irq port and the call-back function must be established by the port constructor in the
constructor of the class VciProcessor :

tlmt_core::tlmt_callback < VciProcessor,bool >(this, &VciProcessor < iss_t,
 vci_param >::irqReceived);

F) Interrupt modeling 9

In the Parallel Discrete Event Simulation, the pessimistic approach relies on the fact that any PDES process is not
allowed to update his local time until it has received messages on all its input ports with times greater than its local
time.

Therefore, a SC_THREAD modeling the behavior of a processor containing an tlmt_core::tlmt_in<bool> should
in principle wait a timestamped packet on its interrupt port before executing instructions. However, such a behavior
would be very inefficient, and is prone to dead-lock situations.

The recommended policy for handling interrupts is the following:

The call-back function irqReceived() sets the member variables m_irqpending and m_irqtime, when a
interrupt packet is received on the p_irq port.

•

The execLoop() thread must test the m_irqpending variable at each cycle (i.e. in each iteration of the
infinite loop).

•

If there is no interrupt pending, the thread continues its execution. If an interrupt is pending, and the
interrupt time is greater than the local time, the thread continues execution. If the interrupt time is equal or
smaller than the local time, the interrupt is handled.

•

Such a violation of the the pessimistic parallel simulation principles creates a loss of accuracy on the interrupt
handling timestamp. This loss of accuracy in the TLM-T simulation is acceptable, as interrupts are asynchronous
events, and the timing error is bounded by the m_lookahead parameter.

F.3) Processor with interrupt example
////////////////////////// vci_processor.h ////////////////////////////////

namespace soclib { namespace tlmt {

template<typename iss_t,typename vci_param>
class VciProcessor
 : public soclib::tlmt::BaseModule
{
 tlmt_core::tlmt_thread_context c0;
 sc_core::sc_event m_rsp_received;
 tlmt_core::tlmt_return m_return;
 bool m_irqpendig; // pending interrupt request
 tlmt_core::tlmt_time m_irqtime; // irq date
 uint32_t m_counter; // iteration counter
 uint32_t m_lookahead; // lookahead value

protected:
 SC_HAS_PROCESS(VciProcessor);

public:
 soclib::tlmt::VciInitiator<vci_param> p_vci;
 tlmt_core::tlmt_in<bool> p_irq;

 VciProcessor(sc_core::sc_module_name name, int id);

 tlmt_core::tlmt_return &rspReceived(soclib::tlmt::vci_rsp_packet<vci_param> *pkt,
 const tlmt_core::tlmt_time &time,
 void *private_data);
 tlmt_core::tlmt_return &irqReceived(bool,
 const tlmt_core::tlmt_time &time,
 void *private_data);
 void execLoop();
};

}}

F.2) Destination modeling 10

////////////////////////// vci_processor.cpp ////////////////////////////////

#include "../include/vci_processor.h"

namespace soclib
{
 namespace tlmt
 {

#define tmpl(x) template<typename iss_t, typename vci_param> x VciProcessor<vci_param>

 tmpl (tlmt_core::tlmt_return &)::rspReceived (soclib::tlmt:: vci_rsp_packet < vci_param > *pkt,
 const tlmt_core:: tlmt_time & time, void *private_data)
 {
 if (pkt->cmd == vci_param::CMD_WRITE)
 m_write_error = (pkt->error != 0);
 else
 m_write_error = false;
 if (pkt->cmd == vci_param::CMD_READ)
 m_read_error = (pkt->error != 0);
 else
 m_read_error = false;
 m_rsptime = time + tlmt_core::tlmt_time (pkt->length);
 m_vci_pending = false;
 m_rsp_received.notify (sc_core::SC_ZERO_TIME);

 return m_return;
 }

 tmpl (tlmt_core::tlmt_return &)::irqReceived (bool v, const tlmt_core::
 tlmt_time & time, void *private_data)
 {
 m_irqpending = val;
 m_irqtime = time;

 return m_return;
 }

 tmpl (void)::execLoop ()
 {
 while(1) {
 ...
 // test interrupts
 if (m_irqpending && (m_irqtime <= c0.time()))
 {
 // interrupt handling
 }
 ...
 // lookahead management
 m_counter++ ;
 if (m_counter >= m_lookahead) {
 m_counter = 0 ;
 sc_core::wait(sc_core::SC_ZERO_TIME) ;
 } // end if
 c0.set_time(c0.time()+tlmt_core::tlmt_time(1)) ;
 } // end while
 }

 tmpl (/**/)::VciProcessor(
 sc_core::sc_module_name name,
 int id)
: soclib::tlmt::BaseModule (name),
 m_counter (0),
 m_lookahead (10),
 p_vci("vci",new tlmt_core::tlmt_callback<VciProcessor,vci_rsp_packet<vci_param>*>(

F.3) Processor with interrupt example 11

 this,&VciProcessor<vci_param>::rspReceived),&c0),
 p_irq("irq",new tlmt_core::tlmt_callback<VciProcesspr,bool>(
 this,&VciProcessor<vci_param>::irqReceived))
 {
 SC_THREAD (execLoop);
 }

}}

F.3) Processor with interrupt example 12

