Writing efficient TLM-T SystemC simulation models
for SoCLib

Authors : Alain Greiner, Frangois Pécheux, Emmanuel Viaud, Nicolas Pouillon

1. A) Introduction
2. B) VCI Communication between a single initiator and a single target
3. C) Initiator Modeling
1. C.1) Sending a VCI command packet
2. C.2) Receiving a VCI response packet
3. C.3) Initiator Constructor
4. C.4) Lookahead parameter
5. C.5) TLM-T initiator example
4. D) Target Modeling
1. D.1) Receiving a VCI command packet
2. D.2) Sending a VCI response packet
3. D.3) Target Constructor
4. D4) TLM-T target example
5. B3) Address space segmentation
6. B4) Component definition
7. BS) Constructor & destructor
8. B6) member functions
5. C) Complete example
1. C1) Component definition
2. C2) Component implementation

A) Introduction

This manual describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib. Those rules
enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the simulation
has is own, local time, and processes synchronize through timed messages. Models complying with those rules can
be used with the "standard" OSCI simulation engine (SystemC 2.x), but can be used also with others simulation
engines, especially distributed, parallelized simulation engines.

Besides you may also want to follow the general SoCLib rules.

B) VCI Communication between a single initiator and
a single target

Figure 1 presents a minimal system containing one single initiator, and a single target. In the proposed example, the
initiator module doesn't contains any parallelism, and can be modeled by a single SC_THREAD, describing a
single PDES process. The activity of the my_initiator module is described by the SC_THREAD execLoop(), that
contain an infinite loop. The variable m_time represents the PDES process local time.

Contrary to the initiator, the target module has a purely reactive behaviour. There is no need to use a SC_THREAD
to describe the target behaviour : A simple method is enough.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels : one to transmit the VCI command packet, one to transmit the VCI response packet.

B) VCI Communication between a single initiator and a single target 1

C) Initiator Modeling

In the proposed example, the initiator module is modeled by the my_initiator class. This class inherit the
Tlmt::BaseModule' class, that is the basis for all TLM-T modules. As there is only one thread in my_initiator,
there is only one member variable time of type tlmt_time. This object can be accessed through the getTime(),
addTime() and setTime() methods. The execLoop() method, describing the initiator activity must be declared as a
member function of the my_initiator class.

C.1) Sending a VCI command packet

The class my_initiator must contain a member variable p_vci, of type VcilnitiatorPort. This object has a template
parameter <vci_param> defining the widths of the VCI ADRESS & DATA fields.

To send a VCI command packet, the execLoop() method must use the cmdSend() method, that is a member
function of the p_vei port. The prototype is the following:

void cmdSend (vei_cmd_t *cmd, // VCI command packet
sc_time time); // initiator local time

The informations transported by a VCI command packet are defined below:

class vci_cmd_t {

vci_command_t cmd; // VCI transaction type

vci_address_t *address; // pointer to an array of addresses on the target side

uint32_t *be; // pointer to an array of byte_enable si
bool contig; // contiguous addresses (when true)

vci_data_t *buf; // pointer to the local buffer on the initiator
uint32_t length; // number of words in the packet

bool eop; // end of packet marker

uint32_t srcid; // SRCID VCI

uint32_t trdid; // TRDID VCI

uint32_t pktid; // PKTID VCI

}

C.2) Receiving a VCI response packet
C.3) Initiator Constructor
C.4) Lookahead parameter

C.5) TLM-T initiator example

template <typename vci_param>
class my_initiator : Tlmt::BaseModule {
public:
VciInitiatorPort <vci_param> p_vci;

//////// constructor

my_initiator (sc_module_name name,
uint32_t initiatorIndex
uint32_t lookahead)

p_vci(?vci?, this, &my_initiator::rspReceived, &m_time) ,
BaseModule (name),
m_time (0),

{

C) Initiator Modeling 2

m_index = InitiatorIndex;
m_lookahed = lookahead;
m_counter = 0;

SC_THREAD (execLoop) ;

} // end constructor

private:

tlmt_Time m_time; // local clock
uint32_t m_index; // initiator index
uint32_t m_counter; // iteration counter
uint32_t m_lookahed; // lookahead value
vci_param::data_t m_datal[8]; // local buffer
vei_cmd_t m_cmd; // paquet VCI commande

//////// thread
void execLoop ()
{
while (1) {
?
m_cmd.cmd = VCI_CMD_READ;
p_vci.cmdSend (&m_cmd, m_time.get_time()); // lecture bloquante
p_vci.wait ();
?
m_cmd.cmd = VCI_CMD_WRITE;
p_vci.send (VCI_CMD_WRITE, ?);
p_vci.cmdSend (&m_cmd, m_time.get_time()); // écriture non bloquante

// lookahead management
m_counter++ ;
if (m_counter >= m_lookahead) {

m_counter = 0 ;
wait (SC_ZERO_TIME) ;
} // end if

m_time.addtime (1) ;

} // end while

} // end execLoop ()
///1//7//7//7////// call-back function
void rspReceived(vci_cmd_t *cmd, sc_time rsp_time)
{

if (cmd == VCI_CMD_READ) {
m_time.set_time(rsp_time + length);

p_vci.notify () ;

}
} // end rspReceived()
} // end class my_initiator

D) Target Modeling

D.1) Receiving a VCI command packet
D.2) Sending a VCI response packet
D.3) Target Constructor

D4) TLM-T target example

Cible TLM-T

D) Target Modeling

template <typename vci_param>
class my_target : Tlmt::BaseModule {

public:
VciTargetPort<vci_param> p_vci;
////////////// constructor
my_target (sc_module_name name,

uint32_t targetIndex,

sc_time latency) :

p_vci(?vci?,this, &my_target::cmdReceived),
BaseModule (name)

{

m_latency = latency;

m_index = targetIndex;

} // end constructor

private:
vci_param::data_t m_datal[8]; // local buffer
sc_time m_latency; // target latency
uint32_t m_index; // target index
vei_rsp_t m_rsp; // paquet VCI réponse

///////7//7////// call-back function
sc_time cmdReceived/(vci_cmd_t *cmd,
sc_time cmd_time)

{

if (cmd->cmd == VCI_CMD_WRITE) {

for(int 1 = 0 ; i < length ; i++) m_data[i] = cmd->buf[i];
}
if (cmd->cmd == VCI_CMD_READ) {

for(int 1 = 0 ; i < length ; i++) cmd->buf[i] = m_datal[i];
}
m_rsp.srcid = cmd->srcid;
m_rsp.trdid = cmd->trdid;

m_rsp.pktid = cmd>pktid;
m_rsp.length = cmd->length;
m_rsp.error = 0;
rsp_time = cmd_time + latency;
p_vci.rspSend(&m_rsp, rsp_time) ;
return (rsp_time + (sc_time)cmd->length);
} // end cmdReceived()

} // end class my_target

As VClI signals can have variable widths, all VCI components must be defined with templates. The
caba/interface/vci_param.h file contains the definition of the VCI parameters object. This object must be passed as
a template parameter to the component.

A typical VCI component declaration is:

#include "caba/util/base_module.h"
#include "caba/interface/vci_target.h"

namespace soclib { namespace caba {
template<typename vci_params>

class VciExampleModule
soclib: :caba: :BaseModule

}i
}}

D4) TLM-T target example

The SystemC top cell defining the system architecture must include the following file, defining the advanced VCI
signals :

e caba/interface/vci_signals.h.

A SoCLib hardware component that has no VCI interface should use a dedicated VCI wrapper in order to be
connected to the VCI interconnect.

B3) Address space segmentation

In a shared memory architecture, the address space segmentation (or memory map) is a global characteristic of the
system. This memory map must be defined by the system designer, and is used by both software, and hardware
components.

Most hardware components use this memory map:

¢ VCI interconnect components contain a routing table used to decode the VCI address MSB bits and route
VCI commands to the proper targets.

¢ V(I target components must be able to check for segmentation violation when receiving a command
packet. Therefore, the base address and size of the segment allocated to a given VCI target must be known
by this target.

® A cache controller supporting uncached segments can contain a cacheability table addressed by the VCI
address MSB bits.

In order to simplify the memory map definition, and the hardware component configuration, a generic object, called
mapping table has been defined in common/mapping_table.h. This is an associative table of memory segments.
Any segment must be allocated to one single VCI target. The segment object is defined in common/segment.h, and
contains five attributes:

const std::string m_name; // segment's name
addr_t m_base_address; // base address
size_t m_size; // size (bytes)
IntTab m_target_index; // VCI target index
bool m_cacheability; // cacheable

Any hardware component using the memory map should have a constant reference to the mapping table as
constructor argument.

B4) Component definition

The component XXX.4 file contains the following informations

Interface definition A typical VCI target component will contain the following ports:

sc_in<bool> p_resetn;
sc_in<bool> p_clk;
soclib::caba::VciTarget<vci_param> p_vci;

Internal registers definition
All internal registers should be defined with the sc_signal type.

This point is a bit tricky: It allows the model designer to benefit from the delayed update mechanism associated by
SystemC to the sc_signal type. When a single module contains several interacting FSMs, it helps to write the

B3) Address space segmentation 5

Transition (), as the registers values are not updated until the exit from the transition function. Conversely, any
member variable declared with the sc_signal type is considered as a register.

A typical VCI target will contain the following registers :

sc_signal<int> r_vci_fsm;

sc_signal<typename vci_param::trdid_t> r_buf_trdid;
sc_signal<typename vci_param::pktid_t> r_buf_srcid;
sc_signal<typename vci_param::srcid_t> r_buf_srcid;

typename vci_param: :trdid_t and others are generically-defined VCI field types
Structural parameters definition

All structural parameters should be be defined as member variables. The values are generally defined by a
constructor argument. Instance name is stored in soclib::common::BaseModule, inherited by
soclib::caba::BaseModule. For example, a VCI target will contain a reference to the the assigned segment, in order
to check possible segmentation errors during execution.

const soclib::common: :Segment m_segment;

B5) Constructor & destructor

Any hardware component must have an instance name, and most SoCLib component must have a VCI index.
Moreover, generic simulation models can have structural parameters. The parameter values must be defined as
constructor arguments, and used by the constructor to configure the hardware ressources. A constructor argument
frequently used is a reference on the soclib::common::MappingTable, that defines the segmentation of the system
address space. A typical VCI component will have the following constructor arguments:

VciExampleModule (
sc_module_name insname,
const soclib::common: :IntTab &index,

const soclib::common: :MappingTable &mt) ;

In this example, the first argument is the instance name, the second argument is the VCI target index, and the third
argument is the mapping table.

Moreover, the constructor must define the sensitivity list of the Transition(), genMoore() and genMealy() methods,
that are described below.

e sensitivity list of the transition() method contains only the clock rising edge.
e sensitivity list of the genMoore() method contains only the clock falling edge.
® sensitivity list of the genMealy() method contains the clock falling edge, as well as all input ports thare in

the support of the Mealy generation function.

Be careful: the constructor should NOT initialize the registers. The register initialization must be an hardware
mechanism explicitly described in the Transition function on reset condition.

B6) member functions

The component behaviour is described by simple member functions. The type ot those methods (Transition,
genMoore, or genMealy) is defined by the sensitivity lists, as specified in BS5.

transition() method

B4) Component definition 6

For each hardware component, there is only one Transition () method. It is called once per cycle, as the
sensitivity list contains only the clock rising edge. This method computes the next values of the registers (variables
that have the sc_signal type). No output port can be assigned in this method. Each register should be assigned

only once.

genMoore() method

For each hardware component, there is only one genMoore () method. It is called once per cycle, as the
sensitivity list contains only the clock falling edge. This method computes the values of the Moore output ports.
(variables that have the sc_out type). No register can be assigned in this method. Each output port can be
assigned only once. No input port can be read in this method

genMealy() methods

For each hardware component, there is zero, one or several genMealy () methods (it can be useful to have one
separated gemealy () method for each output port). These methods can be called several times per cycle. The
sensitivity list can contain several input ports. This method computes the Mealy values of the ouput ports, using
only the register values and the input ports values. No register can be assigned in this method. Each output port can
be assigned only once.

C) Complete example

C1) Component definition

Let's take the soclib::caba::VciLocks component definition and comment it.

#include
#include
#include
#include

// Have
namespac

// Here we pass the VCI parameters as a template argument.

// change data type widths, therefore change some compile-time intrinsics

template
class Vc

ru

// We have only one FSM in this component.

<systemc.h>
"caba/util/base_module.h"
"caba/interface/vci_target.h"
"common/mapping_table.h"

this component in the soclib::caba namespace
e soclib { namespace caba {

<typename vci_param>
iLocks
blic soclib::caba::BaseModule

// VCI target port. The states are:
enum vci_target_fsm_state_e {

}i

// T

sc_s

IDLE,
WRITE_RSP,
READ_RSP,

ERROR_RSP,

he register holding the FSM state:
ignal<int> r_vci_fsm;

This is intended because VCI paramete

It handles the

// Some registers used to save useful data between command & response

sc_s
sc_s
sc_s
sc_s

ignal<typename vci_param::srcid_t> r_buf_srcid;
ignal<typename vci_param::trdid_t> r_buf_ trdid;
ignal<typename vci_param::pktid_t> r_buf_ pktid;
ignal<typename vci_param::eop_t> r_buf_eop;

C) Complete example

sc_signal<bool> r_buf_value;

// Pointer on the table of locks (allocated in the constructor)

sc_signal<bool> *r_contents;

// The segment assigned to this peripheral
soclib: :common: :Segment m_segment;

protected:
// Mandatory SystemC construct
SC_HAS_PROCESS (VciLocks) ;

public:
// The ports
sc_in<bool> p_resetn;
sc_in<bool> p_clk;
soclib::caba::VciTarget<vci_param> p_vci;

// Constructor & descructor, explained above
VciLocks (

sc_module_name insname,

const soclib::common::IntTab &index,

const soclib::common: :MappingTable &mt);
~VciLocks () ;

private:
// The FSM functions
void transition();

void genMoore () ;
}i

// Namespace closing

H)

C2) Component implementation

Here is the soclib::caba::VciLocks component implementation:

#include "caba/target/vci_locks.h"

// Namespace, again
namespace soclib { namespace caba {

// This macro is an helper function to factor out the template parameters

// This is useful in two ways:
// * It makes the syntax clearer

// * It makes template parameters changes easier (only one line to change them all)

// %X 1is the method's return value

#define tmpl (x) template<typename vci_param> x VcilLocks<vci_param>

// The /**/ is a hack to pass no argument to a macro taking one.

// return value in C++)
tmpl (/**/) ::VciLocks (
sc_module_name insname,
const soclib::common::IntTab &index,
const soclib::common: :MappingTable &mt)
// This is the C++ construct for parent construction and
// member variables initialization.
// We initialize the BaseModule with the component's name
soclib: :caba: :BaseModule (insname) ,

(constructor has no

// and get the segment from the mapping table and our index

m_segment (mt.getSegment (index))

C1) Component definition

// There is one lock every 32-bit word in memory. We
// allocate an array of bool for the locks
r_contents = new sc_signal<bool>[m_segment.size()/4];

// Sensitivity list for transition() and genMoore (), no genMealy ()
// in this component

SC_METHOD (transition);

dont_initialize();

sensitive << p_clk.pos();

SC_METHOD (genMoore) ;
dont_initialize();
sensitive << p_clk.neg();

tmpl (/**/) ::~VciLocks ()

{
// Here we must delete dynamically-allocated data...
delete [] r_contents;

tmpl (void) : :transition ()
{
// On reset condition, we initialize the component,
// from FSMs to internal data.
if (!'p_resetn) {
for (size_t 1=0; i<m_segment.size()/4; ++1i)

r_contents[i] = false;
r_vci_fsm = IDLE;
return;

// We are not on reset case.

// Take the address, transform it into an index in our locks table.
typename vci_param::addr_t address = p_vci.address.read();
uint32_t cell = (address-m_segment.baseAddress())/4;

// Implement the VCI target FSM
switch (r_vci_fsm) {

case IDLE:
if (! p_vci.cmdval.read())
break;
/*

* We only accept l-word request packets
* and we check for segmentation violations
*/
if (! p_vci.eop.read() |
! m_segment.contains (address))
r_vci_fsm = ERROR_RSP;

else {

switch (p_vci.cmd.read()) {

case VCI_CMD_READ:
r_buf_value = r_contents[cell];
r_contents[cell] = true;
r_vci_fsm = READ_RSP;
break;

case VCI_CMD_WRITE:
r_contents[cell] = false;
r_vci_fsm = WRITE_RSP;
break;

default:
r_vci_fsm = ERROR_RSP;
break;

C2) Component implementation

r_buf_srcid = p_vci.srcid.read();
r_buf_trdid = p_vci.trdid.read();
r_buf_pktid = p_vci.pktid.read();
r_buf_eop = p_vci.eop.read();
break;

// In those states, we only wait for response to be accepted.
case WRITE_RSP:
case READ_RSP:
case ERROR_RSP:
if (p_vci.rspack.read())
r_vci_fsm = IDLE;
break;

tmpl (void) : :genMoore ()

{
// This is an helper function defined in the VciTarget port definition
p_vci.rspSetIds(r_buf_srcid.read(), r_buf_trdid.read(), r_buf_pktid.read());

// Depending on the state, we give back the expected response.
switch (r_vci_fsm) {
case IDLE:
p_vci.rspNop () ;
break;
case WRITE_RSP:
p_vci.rspWrite(r_buf_eop.read());
break;
case READ_RSP:
p_vci.rspRead(r_buf_eop.read(), r_buf_value.read());
break;
case ERROR_RSP:
p_vci.rspError(r_buf_eop.read());
break;

// We only accept commands in Idle state
p_vci.cmdack = (r_vci_fsm == IDLE);

Component instanciation could be (template_inst.cc):

#include "caba/target/vci_locks.cc"
template class soclib::caba::VcilLocks<soclib::caba::VciParams<4,1,32,1,1,1,8,1,1,1> >;

Command line:

g++ —c -o obj.o —-I/path/to/soclib/systemc/src -I/path/to/soclib/systemc/include template_inst.cc

C2) Component implementation 10

