
Writing TLM2.0-compliant timed SystemC simulation
models for SoCLib
Authors : Alain Greiner, François Pêcheux, Aline Vieira de Mello

A) Introduction1.
B) VCI initiator and VCI target2.
C) VCI Transaction in TLM-T3.
D) VCI initiator Modeling

D.1) Member variables & methods1.
D.2) Sending a VCI command packet2.
D.3) Receiving a VCI response packet3.
D.4) Initiator Constructor4.
D.5) Local Time Representation & Synchronization5.
D.6) VCI initiator example6.

4.

E) VCI target modeling
E.1) Member variables & methods1.
E.2) Receiving a VCI command packet2.
E.3) Sending a VCI response packet3.
E.4) Target Constructor4.
E.5) VCI target example5.

5.

F) VCI Interconnect modeling
F.1) Generic network modeling1.

6.

A) Introduction
This document is still under development.

It describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib that are compliant with
the new TLM2.0 OSCI standard. These rules enforce the PDES (Parallel Discrete Event Simulation) principles. In
the TLM-T approach, we don't use the SystemC global time, as each PDES process involved in the simulation has
its own local time. PDES processes (implemented as SC_THREADS) synchronize through messages piggybacked
with time information. This timing information is actually the absolute locat time of the sender. Models complying
to these TLM-T rules can be used with the "standard" OSCI simulation engine (SystemC 2.x) and the TLM2.0
library, but can also be used also with others simulation engines, especially parallelized simulation engines.

The pessimistic PDES algorithm relies on temporal filtering of the incoming messages. A PDES process that has N
input channels is only allowed to process when it has timing information on all its input ports. For example, an
interconnect is only allowed to let a command packet reach a given target when all the initiators that can address
this target have sent at least one timed message. To solve this issue the PDES algorithm uses nul message. A null
message contain no data, but only a time information. Moreover, all processes can be in two modes : active &
non-active. Only processes that are active participate to the temporal filtering.

A first implementation of TLMT used sollicited null messages, but the final solution uses direct null-messages, that
strictly follow the Chandy-Misra pessimistic algorithm. Each process cannot run independantly without sending a
timed message for a time larger that a predefined value, called the SYNCHRONIZATION_TIME_QUANTUM.
When this time quantum is elapsed, the process must send a null message on its output ports.

The models following the writing rules defined herein are syntactically compliant with the TLM2.0 standard, but
have a different representation for the time. In particular, the third parameter of the transport functions is
considered to be an absolute (but local) time and is not an offset relative to a global simulation time that is not used

A) Introduction 1

anymore. The examples presented below use the VCI/OCP communication protocol selected by the SoCLib
project, but the TLM-T approach described here is very flexible, and is not limited to the VCI/OCP communication
protocol.

The interested user should also look at the general SoCLib rules.

B) VCI initiator and VCI target
Figure 1 presents a minimal system containing one single VCI initiator, my_initiator , and one single VCI target,
my_target . The initiator behavior is modeled by the SC_THREAD execLoop(), that contains an infinite loop. The
interface function nb_transport_bw() is executed when a VCI response packet is received by the initiator module.

Unlike the initiator, the target module has a purely reactive behaviour and is therefore modeled as a simple
interface function. In other words, there is no need to use a SC_THREAD for a target component: the target
behaviour is entirely described by the interface function nb_transport_fw(), that is executed when a VCI
command packet is received by the target module.

The VCI communication channel is a point-to-point bi-directional channel, encapsulating two separated
uni-directional channels: one to transmit the VCI command packet in the nb_transport_fw() function, one to
transmit the VCI response packet in the nb_transport_bw() function.

C) VCI Transaction in TLM-T
The TLM2.0 standard defines a generic payload that contains almost all the fields needed to implement the
complete vci protocol. In SocLib, the missing fields are defined in what TLM2.0 calls a payload extension. The
C++ class used to implement this extension is soclib_payload_extension.

The SocLib payload extension only contains four data members:

 soclib::tlmt::command m_soclib_command;
 unsigned int m_src_id;
 unsigned int m_trd_id;
 unsigned int m_pkt_id;

The m_soclib_command data member supersedes the command of the TLM2.0 generic payload. The parameter to
the set_command() of a generic payload is always set to tlm::TLM_IGNORE_COMMAND. Seven values can
be assigned to m_soclib_command. These values are:

 VCI_READ_COMMAND
 VCI_WRITE_COMMAND
 VCI_LINKED_READ_COMMAND
 VCI_STORE_CONDITIONAL_COMMAND
 TLMT_NULL_MESSAGE
 TLMT_ACTIVE
 TLMT_INACTIVE

The VCI_READ_COMMAND (resp. VCI_WRITE_COMMAND) is used to send a VCI read (resp. write)
packet command. The VCI_LINKED_READ_COMMAND and VCI_STORE_CONDITIONAL_COMMAND
are used to implement atomic operations. The latter 3 values are not directly related to VCI but rather to the PDES
simulation algorithm. The TLMT_NULL_MESSAGE value is used whenever an initiator needs to send its local
time to the rest of the platform for synchronization purpose. The TLMT_ACTIVE and TLMT_INACTIVE
values are used to inform the interconnect that the corresponding initiator must be taken into account in the

C) VCI Transaction in TLM-T 2

temporal filtering or not. A programmable component such as a DMA controller, until it has been programmed and
launched should not participate in the PDES time filtering. At the beginning of the simulation, all the initiators send
at least one synchronization message.

The data members of the soclib_payload_extension can be accessed through the following access functions:

 // Command related method
 bool is_read() const {return (m_soclib_command == soclib::tlmt::VCI_READ_COMMAND);}
 void set_read() {m_soclib_command = soclib::tlmt::VCI_READ_COMMAND;}
 bool is_write() const {return (m_soclib_command == soclib::tlmt::VCI_WRITE_COMMAND);}
 void set_write() {m_soclib_command = soclib::tlmt::VCI_WRITE_COMMAND;}
 bool is_locked_read() const {return (m_soclib_command == soclib::tlmt::VCI_LINKED_READ_COMMAND);}
 void set_locked_read() {m_soclib_command = soclib::tlmt::VCI_LINKED_READ_COMMAND;}
 bool is_store_cond() const {return (m_soclib_command == soclib::tlmt::VCI_STORE_COND_COMMAND);}
 void set_store_cond() {m_soclib_command = soclib::tlmt::VCI_STORE_COND_COMMAND;}
 bool is_null_message() const {return (m_soclib_command == soclib::tlmt::TLMT_NULL_MESSAGE);}
 void set_null_message() {m_soclib_command = soclib::tlmt::TLMT_NULL_MESSAGE;}
 bool is_active() const {return (m_soclib_command == soclib::tlmt::TLMT_ACTIVE);}
 void set_active() {m_soclib_command = soclib::tlmt::TLMT_ACTIVE;}
 bool is_inactive() const {return (m_soclib_command == soclib::tlmt::TLMT_INACTIVE);}
 void set_inactive() {m_soclib_command = soclib::tlmt::TLMT_INACTIVE;}
 soclib::tlmt::command get_command() const {return m_soclib_command;}
 void set_command(const soclib::tlmt::command c) {m_soclib_command = c;}

 unsigned int get_src_id(){ return m_src_id; }
 unsigned int get_trd_id(){ return m_trd_id; }
 unsigned int get_pkt_id(){ return m_pkt_id; }

 void set_src_id(unsigned int id) { m_src_id = id; }
 void set_trd_id(unsigned int id) { m_trd_id = id; }
 void set_pkt_id(unsigned int id) { m_pkt_id = id; }

To build a new VCI packet, one has to create a generic payload and a soclib payload extension, and to call the
appropriate access functions on these two objects. For example, to issue a VCI read command, one should write the
following code:

 tlm::tlm_generic_payload *payload_ptr = new tlm::tlm_generic_payload();
 tlm::tlm_phase phase;
 soclib_payload_extension *extension_ptr = new soclib_payload_extension();
 sc_core::sc_time send_time;
 ...

 // set the values in tlm payload
 payload_ptr->set_command(tlm::TLM_IGNORE_COMMAND);
 payload_ptr->set_address(0x10000000]);
 payload_ptr->set_byte_enable_ptr(byte_enable);
 payload_ptr->set_byte_enable_length(nbytes);
 payload_ptr->set_data_ptr(data);
 payload_ptr->set_data_length(nbytes);
 // set the values in payload extension
 extension_ptr->set_read();
 extension_ptr->set_src_id(m_srcid);
 extension_ptr->set_trd_id(0);
 extension_ptr->set_pkt_id(pktid);
 // set the extension to tlm payload
 payload_ptr->set_extension (extension_ptr);
 // set the tlm phase
 phase = tlm::BEGIN_REQ;
 // set the local time to transaction time
 send_time = m_local_time;

C) VCI Transaction in TLM-T 3

D) VCI initiator Modeling

D.1) Member variables & methods

In the proposed example, the initiator module is modeled by the my_initiator class. This class inherits from the
standard SystemC sc_core::sc_module class, that acts as the root class for all TLM-T modules.

The initiator local time is contained in a member variable named m_local_time, of type sc_core::sc_time. The
local time can be accessed with the following accessors: addLocalTime(), setLocalTime() and getLocalTime().

 sc_core::sc_time m_local_time; // the initiator local time
 ...
 void addLocalTime(sc_core::sc_time t); // add an increment to the local time
 void setLocalTime(sc_core::sc_time& t); // set the local time
 sc_core::sc_time getLocalTime(void); // get the local time

The boolean member variable m_activity_status indicates if the initiator is currently active. It is used by the
temporal filtering threads contained in the vci_vgmn interconnect, as described in section F. The corresponding
access functions are setActivity() and getActivity().

 bool m_activity_status;
 ...
 void setActivity(bool t); // set the activity status (true if the component is active)
 bool getActivity(void); // get the activity state

The execLoop() method, describing the initiator behaviour must be declared as a member function.

The my_initiator class contains a member variable p_vci_init, of type tlm_utils::simple_initiator_socket,
representing the VCI initiator port.

It must also define an interface function to handle the VCI response packets.

D.2) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the nb_transport_fw() method, defined by
TLM2.0, that is a member function of the p_vci_init port. The prototype of this method is the following:

 tlm::tlm_sync_enum nb_transport_fw
 (tlm::tlm_generic_payload &payload, // payload
 tlm::tlm_phase &phase, // phase (TLM::BEGIN_REQ)
 sc_core::sc_time &time); // absolute local time

The first argument is a pointer to the payload (including the soclib payload extension), the second represents the
phase (always set to TLM::BEGIN_REQ for requests), and the third argument contains the initiator local time. The
return value is not used in this TLM-T implementation.

The nb_transport_fw() function is non-blocking. To implement a blocking transaction (such as a cache line read,
where the processor is stalled during the VCI transaction), the model designer must use the SystemC
sc_core::wait(x) primitive (x being of type sc_core::sc_event): the execLoop() thread is then suspended, and will
be reactivated when the response packet is actually received.

D) VCI initiator Modeling 4

D.3) Receiving a VCI response packet

To receive a VCI response packet, an interface function must be defined as a member function of the class
my_initiator. This function (named nb_transport_bw() in the example), must be linked to the p_vci_init port, and
is executed each time a VCI response packet is received on the p_vci_init port. The function name is not
constrained, but the arguments must respect the following prototype:

 tlm::tlm_sync_enum nb_transport_bw
 (tlm::tlm_generic_payload &payload, // payload
 tlm::tlm_phase &phase, // phase (TLM::BEGIN_RESP)
 sc_core::sc_time &time); // response time

The return value (type tlm::tlm_sync_enum) is not used in this TLM-T implementation, and must be sytematically
set to tlm::TLM_COMPLETED.

D.4) Initiator Constructor

The constructor of the class my_initiator must initialize all the member variables, including the p_vci_init port.
The nb_transport_bw() function being executed in the context of the thread sending the response packet, a link
between the p_vci_init port and this interface function must be established.

The constructor for the p_vci_init port must be called with the following arguments:

 p_vci_init.register_nb_transport_bw(this, &my_initiator::nb_transport_bw);

D.5) Local Time Representation & Synchronization

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution

at some point, in order to allow the other threads to execute. Moreover each PDES process must
send null message periodically.

To solve this issue, it is necessary to define -for each initiator module- a synchronization time quantum
parameter. This parameter defines the maximum delay between two successive timed messages. When this time
quantum is elapsed, the component send a null message, and the corresponding thread is descheduled.

This time quantum mechanism is implemented in the pdes_local_time class. For each initiator, the time quantum
value is a parameter defined as a constructor argument. The three members methods are...

D.6) VCI initiator example
#include "my_initiator.h" // Our header

my_initiator::my_initiator(
 sc_core::sc_module_name name, // module name
 const soclib::common::IntTab &index, // index of mapping table
 const soclib::common::MappingTable &mt, // mapping table
 uint32_t time_quantum) // time quantum
 : sc_module(name), // init module name
 m_mt(mt), // mapping table
 p_vci_init("socket") // vci initiator socket name
{
 //register callback function VCI INITIATOR SOCKET
 p_vci_init.register_nb_transport_bw(this, &my_initiator::my_nb_transport_bw);

D.3) Receiving a VCI response packet 5

 //initiator identification
 m_srcid = mt.indexForId(index);

 //Quantum keeper
 tlm_utils::tlm_quantumkeeper::set_global_quantum(time_quantum * UNIT_TIME);
 m_QuantumKeeper.reset();

 //initialize the local time
 m_local_time = sc_core::SC_ZERO_TIME;

 //initialize the activity variable
 setActivity(true);

 // register thread process
 SC_THREAD(behavior);
}

///
// Fuctions
///
bool my_initiator::getActivity()
{
 return m_activity_status;
}

void my_initiator::setActivity(bool t)
{
 m_activity_status =t;
}

//send a message to network to inform the current activity status
void my_initiator::sendActivity()
{
 tlm::tlm_generic_payload *payload_ptr = new tlm::tlm_generic_payload();
 tlm::tlm_phase phase;
 sc_core::sc_time send_time;
 soclib_payload_extension *extension_ptr = new soclib_payload_extension();

 // set the active or inactive command
 if(m_activity_status) extension_ptr->set_active();
 else extension_ptr->set_inactive();
 // set the extension to tlm payload
 payload_ptr->set_extension (extension_ptr);
 //set the tlm phase
 phase = tlm::BEGIN_REQ;
 //set the local time to transaction time
 send_time = m_local_time;
 //send the message
 p_vci_init->nb_transport_fw(*payload_ptr, phase, send_time);
 //wait a response
 wait(m_rspEvent);
}

sc_core::sc_time my_initiator::getLocalTime()
{
 return m_local_time;
}

void my_initiator::setLocalTime(sc_core::sc_time &t)
{
 m_local_time=t;
}

void my_initiator::addTime(sc_core::sc_time t)
{

D.6) VCI initiator example 6

 m_local_time= m_local_time + t;
}

//send a null message to network to inform the current local time
void my_initiator::sendNullMessage()
{
 tlm::tlm_generic_payload *payload_ptr = new tlm::tlm_generic_payload();
 tlm::tlm_phase phase;
 sc_core::sc_time send_time;
 soclib_payload_extension *extension_ptr = new soclib_payload_extension();

 // set the null message command
 extension_ptr->set_null_message();
 // set the extension to tlm payload
 payload_ptr->set_extension(extension_ptr);
 //set the tlm phase
 phase = tlm::BEGIN_REQ;
 //set the local time to transaction time
 send_time = m_local_time;
 //send the null message
 p_vci_init->nb_transport_fw(*payload_ptr, phase, send_time);
 //deschedule
 wait(sc_core::SC_ZERO_TIME);
}
// initiator thread
void my_initiator::behavior(void)
{
 tlm::tlm_generic_payload *payload_ptr = new tlm::tlm_generic_payload();
 tlm::tlm_phase phase;
 sc_core::sc_time send_time;
 soclib_payload_extension *extension_ptr = new soclib_payload_extension();

 uint32_t nwords = 1;
 uint32_t nbytes= nwords * vci_param::nbytes;
 unsigned char data[nbytes];
 unsigned char byte_enable[nbytes];

 for(unsigned int i=0; i<nbytes; i++){
 byte_enable[i]=0xFF;
 data[i]=0xAA;
 }

 while (true){
 //increment the local time
 addTime(100 * UNIT_TIME);
 m_QuantumKeeper.inc(100 * UNIT_TIME);

 // set the values in tlm payload
 payload_ptr->set_command(tlm::TLM_IGNORE_COMMAND);
 payload_ptr->set_address(0x10000000);
 payload_ptr->set_byte_enable_ptr(byte_enable);
 payload_ptr->set_byte_enable_length(nbytes);
 payload_ptr->set_data_ptr(data);
 payload_ptr->set_data_length(nbytes);
 // set the values in payload extension
 extension_ptr->set_write();
 extension_ptr->set_src_id(m_srcid);
 extension_ptr->set_trd_id(0);
 extension_ptr->set_pkt_id(0);
 // set the extension to tlm payload
 payload_ptr->set_extension(extension_ptr);
 // set the tlm phase
 phase = tlm::BEGIN_REQ;
 // set the local time to transaction time
 send_time = m_local_time;

D.6) VCI initiator example 7

 // send the transaction
 p_vci_init->nb_transport_fw(*payload_ptr, phase, send_time);
 // wait the response
 wait(m_rspEvent);

 // if the initiator needs synchronize then it sends a null message and resets the quantum keeper
 if (m_QuantumKeeper.need_sync()) {
 sendNullMessage();
 m_QuantumKeeper.reset();
 }
 } // end while true
 setActivity(false);
 sendActivity();
} // end initiator_thread

///
// Virtual Fuctions tlm::tlm_bw_transport_if (VCI INITIATOR SOCKET)
///
tlm::tlm_sync_enum my_initiator::my_nb_transport_bw // inbound nb_transport_bw
(tlm::tlm_generic_payload &payload, // payload
 tlm::tlm_phase &phase, // phase
 sc_core::sc_time &time) // time
{
 //update the local time
 setLocalTime(time);
 //increment the quatum keeper using the difference between the sending time and response time
 m_QuantumKeeper.inc(time - send_time);
 //notify the initiator thread
 m_rspEvent.notify(sc_core::SC_ZERO_TIME);
 return tlm::TLM_COMPLETED;
} // end backward nb transport

E) VCI target modeling
In this example, the my_target component handles all VCI command types in the same way, and there is no error
management.

E.1) Member variables & methods

The class my_target inherits from the class sc_core::sc_module. The class my_target contains a member variable
p_vci_target of type tlm_utils::simple_target_socket, representing the VCI target port. It contains an interface
function to handle the received VCI command packets, as described below.

E.2) Receiving a VCI command packet

To receive a VCI command packet, an interface function must be defined as a member function of the class
my_target. This function (named nb_transport_fw() in the example), is executed each time a VCI command
packet is received on the p_vci_target port. The function name is not constrained, but the arguments must respect
the following prototype:

 tlm::tlm_sync_enum nb_transport_fw
 (tlm::tlm_generic_payload &payload, // payload
 tlm::tlm_phase &phase, // phase (TLM::BEGIN_REQ)
 sc_core::sc_time &time); // time

The return value (type tlm::tlm_sync_enum) is not used in this TLM-T implementation, and must be sytematically
set to tlm::TLM_COMPLETED.

E) VCI target modeling 8

E.3) Sending a VCI response packet

To send a VCI response packet the call-back function uses the nb_transport_bw() and has the same arguments as
the nb_transport_fw() function. Respecting the general TLM2.0 policy, the payload argument refers to the same
tlm_generic_payload object for both the nb_transport_fw() and nb_transport_bw() functions, and the
associated interface functions. Only two values are used for the response_status field in this TLM-T
implementation:

TLM_OK_RESPONSE•
TLM_GENERIC_ERROR_RESPONSE•

For a reactive target, the response packet time is computed as the command packet time plus the target intrinsic
latency.

 tlm::tlm_sync_enum nb_transport_bw
 (tlm::tlm_generic_payload &payload,
 tlm::tlm_phase &phase,
 sc_core::sc_time &time)
 {
 ...
 payload.set_response_status(tlm::TLM_OK_RESPONSE);
 phase = tlm::BEGIN_RESP;
 time = time + (nwords * UNIT_TIME);
 p_vci_target->nb_transport_bw(payload, phase, time);
 }

E.4) Target Constructor

The constructor of the class my_target must initialize all the member variables, including the p_vci_target port.
The nb_transport_fw() function being executed in the context of the thread sending the command packet, a link
between the p_vci_target port and the call-back function must be established. The my_target constructor must be
called with the following arguments:

 p_vci_target.register_nb_transport_fw(this, &my_target::nb_transport_fw);

E.5) VCI target example
#include "my_target.h"

my_target::my_target
(sc_core::sc_module_name name,
 const soclib::common::IntTab &index,
 const soclib::common::MappingTable &mt)
 : sc_module(name),
 m_mt(mt),
 p_vci_target("socket")
{
 //register callback fuction
 p_vci_target.register_nb_transport_fw(this, &my_target::my_nb_transport_fw);

 //identification
 m_tgtid = m_mt.indexForId(index);
}

my_target::~my_target(){}

///
// Virtual Fuctions tlm::tlm_fw_transport_if (VCI TARGET SOCKET)

E.3) Sending a VCI response packet 9

///
tlm::tlm_sync_enum my_target::my_nb_transport_fw // non-blocking transport call through Bus
(tlm::tlm_generic_payload &payload, // generic payoad pointer
 tlm::tlm_phase &phase, // transaction phase
 sc_core::sc_time &time) // time it should take for transport
{
 soclib_payload_extension *extension_pointer;
 payload.get_extension(extension_pointer);

 //this target does not treat the null message
 if(extension_pointer->is_null_message()){
 return tlm::TLM_COMPLETED;
 }

 uint32_t srcid = extension_pointer->get_src_id();
 uint32_t nwords = payload.get_data_length() / vci_param::nbytes;
 uint32_t address = payload.get_address();

 switch(extension_pointer->get_command()){
 case soclib::tlmt::VCI_READ_COMMAND:
 case soclib::tlmt::VCI_WRITE_COMMAND:
 case soclib::tlmt::VCI_LINKED_READ_COMMAND:
 case soclib::tlmt::VCI_STORE_COND_COMMAND:
 ...

 //set response status
 payload.set_response_status(tlm::TLM_OK_RESPONSE);
 //modify the phase
 phase = tlm::BEGIN_RESP;
 //increment the target processing time
 time = time + (nwords * UNIT_TIME);
 //send the response
 p_vci_target->nb_transport_bw(payload, phase, time);
 return tlm::TLM_COMPLETED;
 break;
 default:
 break;
 }

 //send error message
 payload.set_response_status(tlm::TLM_COMMAND_ERROR_RESPONSE);
 //modify the phase
 phase = tlm::BEGIN_RESP;
 //increment the target processing time
 time = time + nwords * UNIT_TIME;
 //send the response
 p_vci_target->nb_transport_bw(payload, phase, time);
 return tlm::TLM_COMPLETED;
}

F) VCI Interconnect modeling
The VCI interconnect used for the TLM-T simulation is a generic interconnection network, named VciVgmn. The
two main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the detailed, cycle-accurate, behavior of a particular interconnect. We only want to simulate the
contention in the network, when several VCI intitiators try to reach the same VCI target.

In a physical network such as the multi-stage network described in Figure 2.a, conflicts can appear
at any intermediate switch.

F) VCI Interconnect modeling 10

The VciVgmn network, described in Figure 2.b, is modeled as a cross-bar, and conflicts can only happen at the
output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

F.1) Generic network modeling

According to PDES, a packet P emitted by an initiator reaches the correct target when it is safe to do so, i.e. when
the interconnect is sure that no initiator will send a packet with a timestamp lesser than the timestamp of P. This
temporal filtering operation can be factorized, when all the connected active initiators have sent at least one
message to the interconnect. These messages are stored in a centralized data structure. This structure stores tree
information: the packet, the timestamps and the current initiator activity. After elaboration of the simulator, the
activity information for each initiator is set to true. A coprocessor initiator will send a message with
m_soclib_command set to TLMT_INACTIVE at the beginning of the simulation. Therefore, when all slots of
this centralized structure are filled with real or null messages with their associated timestamps, a temporal filtering
iteration can occur.

The arbitration process must take into account the actual state of the VCI initiators: For example a DMA
coprocessor that has not yet been activated will not send request and should not participate in the temporal filtering
and arbitration process. As a general rule, each VCI initiator must define an active boolean flag, defining if it
should participate to the arbitration. This active flag is always set to true for general purpose processors.

There are actually two fully independent networks for VCI command packets and VCI response packets.

The two networks are not symmetrical :

There is one processing thread for each output port (i.e. one processing thread for each VCI target). Each
processing thread is modeled by a SC_THREAD, and contains a dedicated message fifo and a local time.
This time represents the target local time.

•

For the response network, there are no conflicts, and therefore there is no thread (and no local time). The
response network is implemented by simple function calls.

•

This scheme is illustrated in Figure 3 for a network with 2 initiators and three targets :

The command network handles the two following tasks:

Temporal filtering and arbitration of the requests from the initiators.•

This task is activated when all the connected initiators have sent at least one message to the interconnect. The task
computes the list of the messages that can actually be sent to the targets according to PDES. The list contains all the
messages which timestamp belongs to the time interval [T, T+ interconnect_delay], where T is the smallest
timestamp of all the messages in the interconnect. Priority between initiators with the same local time is computed
using a traditional round-robin algorithm. The temporal filtering and arbitration task is executed in the context of
the initiator that sends a new (possibly null) message.

Routing of a filtered request packet to the correct target. Each target runs under the control of a processing
thread and

•

has a dedicated message fifo. The routing wakes up the processing thread of the corresponding target, that empties
the message fifo filled by the temporal filtering. The behavioral function of the target is executed in the context of

F.1) Generic network modeling 11

the processing thread.

F.1) Generic network modeling 12

