Writing efficient TLM-T SystemC simulation models
for SoCLib

Authors : Alain Greiner, Frangois Pécheux, Emmanuel Viaud, Nicolas Pouillon

1. A) Introduction
2. B) Single VCI initiator and single VCI target
3. ©) VClI initiator Modeling
1. C.1) Sending a VCI command packet
2. C.2) Receiving a VCI response packet
3. C.3) Initiator Constructor
4. C.4) Lookahead parameter
5. C.4) VCl initiator example
4. D) VCI target modeling
1. D.1) Receiving a VCI command packet
2. D.2) Sending a VCI response packet
3. D.3) Target Constructor
4. D.4) VCI target example
5. E) VCI Interconnect
1. E.1) Generic network modeling
2. E.2) VCl initiators and targets synchronisations
6. E) Interrupt modeling
1. E.1) Source modeling
2. E.2) Destination modeling
3. E.3) Processor with interrupt example

A) Introduction

This document describes the modeling rules for writing TLM-T SystemC simulation models for SOCLib. These
rules enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the
simulation has its own local time, and PDES processes synchronize through messages piggybacked with time
information. Models complying to these rules can be used with the "standard" OSCI simulation engine (SystemC
2.x), but can also be used also with others simulation engines, especially distributed, parallelized simulation
engines.

The interested user should also look at the general SoCLib rules.

B) Single VClI initiator and single VCI target

Figure 1 presents a minimal system containing one single initiator, VciSimplelnitiator , and one single target,
VciSimpleTarget . The VciSimplelnitiator module behavior is modeled by the SC_THREAD execLoop(), that
contains an infinite loop. The call-back function rspReceived() is executed when a VCI response packet is received
by the initiator module.

0

Unlike the initiator, the target module has a purely reactive behaviour and is therefore modeled as a call-back
function. Actually, there is no need to use a SC_THREAD : The target behaviour is entirely described by the
call-back function cmdReceived(), that is executed when a VCI command packet is received by the target module.

B) Single VCl initiator and single VCI target 1



The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels : one to transmit the VCI command packet, one to transmit the VCI response packet.

C) VCl initiator Modeling

In the proposed example, the initiator module is modeled by the VciSimplelnitiator class. This class inherits from
the soclib::tlmt::BaseModule class, that acts as the root class for all TLM-T modules. The process time, as well as
other useful process attributes, is contained in a C++ structure called a tlmt_thread_context.As there is only one
thread in this module, there is only one member variable c0 of type timt_core::tlmt_thread_context. c0 mostly
corresponds to the PDES process local time (H on the figure). Time associated to the ¢0 object can be accessed
through the getter function time(), and setter functions set_time() and update_time().

The execLoop() method, describing the initiator activity must be declared as a member function of the
my_initiator class.

Finally, the class my_initiator must contain a member variable p_vci, of type VcilnitiatorPort. This object has a
template parameter <vci_param> defining the widths of the VCI ADRESS & DATA fields.

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the send() method, that is a member function of
the p_vci port. The prototype is the following:

void send(vci_cmd_t *cmd, // VCI command packet
uint32_t time); // initiator local time

The informations transported by a VCI command packet are defined below:

class vci_cmd_t {

vci_param::vci_command_t cmd; // VCI transaction type
vci_param::vci_address_t *address; // pointer to an array of addresses on the target side
uint32_t Dbe; // byte_enable value (same value for all packet words)

bool contig; // contiguous addresses (when true)

vci_param::vci_data_t *buf; // pointer to the local buffer on the initiator
uint32_t length; // number of words in the packet

uint32_t srcid; // VCI Source 1D

uint32_t trdid; // VCI Thread ID

uint32_t pktid; // VCI Packet ID

}

The possible values for the emd fied are vci_param: : CMD_READ, vci_param: :CMD_WRITE,
vci_param: :CMD_READ_LOCKED, and vci_param: : CMD_STORE_COND. The contig field can be used for
optimisation.

The send() function is non-blocking. To implement a blocking transaction (such as a cache line read, where the
processor is frozen during the VCI transaction), the model designer must use the wait() primitive : the execLoop()
thread is suspended, and will be activated when the response packet is received.

C.2) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class
my_initiator. This call-back function (named rspReceived() in the example), will be executed each time a VCI
response packet is received on the p_vci port. The function name is not constrained, but the arguments must respect
the following prototype:

C) VCl initiator Modeling 2



void rspReceived(vci_rsp_t *rsp, uint32_t time)
The informations transported by a VCI response packet are defined below:

class vci_rsp_t {

vci_command_t cmd; // VCI transaction type
uint32_t length; // number of words in the packet
uint32_t error; // error code (0 if no error)
uint32_t srcid; // VCI Source 1D

uint32_t trdid; // VCI Thread ID

uint32_t pktid; // VCI Packet ID

}

The actions executed by the call-back function depend on the transaction type (cmd field), as well as the pktid and
trdid fields.

In the proposed example :

¢ In case of of a blocking read , the call-back function updates the local time, and activates the suspended
thread.
¢ In case of a non-blocking write, the call-back function does nothing.

C.3) Initiator Constructor

The constructor of the class my_initiator must initialize all the member variables, including the p_vei port. The
rspReceived() call-back function being executed in the context of the thread sending the response packet, a link
between the p_vci port and the call-back function must be established. Moreover, the p_vci port must contain a
pointer to the initiator local time.

The VcilnitiatorPort constructor must be called with the following arguments:

p_vci(?vci?, this, &my_initiator::rspReceived, &m_time);

C.4) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after at some point, in order to allow the other threads to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches).

To solve this problem, it is necessary to define - for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it stops. The lookahead
parameter allows the system designer to bound the de-synchronization between threads.

A small value for this parameter result in a better timing accuracy for the simulation, but implies a larger number of
context switch, and a slower simulation speed.

C.4) VCl initiator example

template <typename vci_param>
class my_initiator : tlmt::BaseModule {
public:

VciInitiatorPort <vci_param> p_vci;

//////// constructor

C.2) Receiving a VCI response packet 3



my_initiator (sc_module_name name,
uint32_t initiatorIndex
uint32_t lookahead)
p_vci(?vci?, this, &my_initiator::rspReceived, &m_time),
tlmt::BaseModule (name),
m_time (0)

{

m_index = InitiatorIndex;
m_lookahed = lookahead;
m_counter = 0;

SC_THREAD (execLoop) ;
} // end constructor

private:
tlmt_time m_time; // local clock
uint32_t m_index; // initiator index
uint32_t m_counter; // iteration counter
uint32_t m_lookahed; // lookahead value
vci_param::data_t m_data[8]; // local buffer
vci_cmd_t m_cmd; // paquet VCI commande
sc_event m_rsp_received; // synchronisation signal

//////// thread
void execLoop ()
{
while (1) {
?
m_cmd.cmd = VCI_CMD_READ;
p_vci.send(&m_cmd, m_time.getTime()); // lecture bloquante
wailt (m_rsp_resceived);
?
m_cmd.cmd = VCI_CMD_WRITE;
p_vci.send(&m_cmd, m_time.getTime()); // écriture non bloquante

// lookahead management
m_counter++ ;
if (m_counter >= m_lookahead) {

m_counter = 0 ;
wait (SC_ZERO_TIME) ;
} // end if

m_time.addtime (1) ;
} // end while
} // end execLoop ()

//////////////// call-back function

void rspReceived(vci_cmd_t *cmd, uint32_t rsp_time)
{
if (cmd == VCI_CMD_READ) {
m_time.set_time(rsp_time + length);
m_rsp_received.notify (SC_ZERO_TIME) ;

}
} // end rspReceived()
} // end class my_initiator

D) VCI target modeling

In the proposed example, the target handle two types of command : a read burst of 8 words, and a write burst of 8
words. To simplify the model, there is no error management.

The class my_target inherit the class BaseModule, that is the basis for all TLM-T modules. The class my_target

contains a member variable p_vci of type VciTargetPort. This object has a template parameter <vci_param>
defining the widths of the VCI ADRESS & DATA fields.

D) VCI target modeling



D.1) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
my_target. This call-back function (named cmdReceived() in the example), will be executed each time a VCI
command packet is received on the p_vei port. The function name is not constrained, but the arguments must
respect the following prototype:

uint32_t cmdReceived(vci_cmd_t *cmd,
uint32_t time)

For the read and write transactions, the actual data transfer is performed by this cmdReceived() function. To avoid
multiple data copies, only the pointer on the initiator data buffer is transported in the VCI command pacquet
(source buffer for a write transaction, or destination buffer for a read transaction).

D.2) Sending a VCI response packet

To send a VCI response packet the cmdReceived() function must use the send() method, that is a member function
of the class VciTargetPort, and has the following prototype:

void send( vci_rsp_t *cmd,
uint32_t time)

For a reactive target, the response packet date is computed as the command packet date plus the target intrinsic
latency.

D.3) Target Constructor

The constructor of the class my_target must initialize all the member variables, including the p_vci port. The
cmdReceived() call-back function being executed in the context of the thread sending the command packet, a link
between the p_vci port and the call-back function must be established. The VciTargetPort constructor must be
called with the following arguments:

p_vci(?vci?, this, &my_initiator::cmdReceived)

D.4) VCI target example

template <typename vci_param>
class my_target : tlmt::BaseModule {
public:

VciTargetPort<vci_param> p_vci;

////////////// constructor
my_target (sc_module_name name,
uint32_t targetlIndex,
uint32_t latency):
p_vci(?vci?,this, &my_target::cmdReceived),
tlmt::BaseModule (name)
{
m_latency = latency;
m_index = targetIndex;
} // end constructor

private:
vci_param::data_t m_data[8]; // local buffer
uint32_t m_latency; // target latency

uint32_t m_index; // target index

D.1) Receiving a VCI command packet 5



vci_rsp_t m_rsp; // paquet VCI réponse

/////////7////// call-back function
uint32_t cmdReceived(vci_cmd_t *cmd,
uint32_t cmd_time)

{

if (cmd->cmd == VCI_CMD_WRITE) {
for(int 1 = 0 ; i < length ; i++) m_datal[i] = cmd->buf[i];
}

if (cmd->cmd == VCI_CMD_READ) {
for(int 1 = 0 ; i < length ; i++) cmd->buf[i] = m_datal[i];

}
m_rsp.srcid = cmd->srcid;
m_rsp.trdid = cmd->trdid;
m_rsp.pktid = cmd>pktid;
m_rsp.length = cmd->length;
m_rsp.error = 0;
rsp_time = cmd_time + latency;
p_vci.send(&m_rsp, rsp_time) ;
return (rsp_time + cmd->length);
} // end cmdReceived/()
} // end class my_target

E) VCI Interconnect

The VCI interconnect used for the TLM-T simulation is a generic simulation model, named VciVgmn. The two
main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the
network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled
as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts
can appear at any intermediate switch. In the VeiVgmn network described in Figure 2.b, conflicts can only happen
at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

0

E.1) Generic network modeling

There is actually two fully independent networks for VCI command packets and VCI response
packets. There is a routing function for each input port, and an arbitration function for each output
port, but the two networks are not symmetrical :

¢ For the command network, the arbitration policy is distributed: there is one arbitration thread for each
output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a
SC_THREAD, and contain a local clock.

¢ For the response network, there is no conflicts, and there is no need for arbitration. Therefore, there is no
thread (and no local time) and the response network is implemented by simple function calls.

This is illustrated in Figure 3 for a network with 2 initiators and three targets :

0

E.2) VCI initiators and targets synchronisations

As described in sections B & C, each VCI initiator TLM-T module contains a thread and a local clock. But, in order
to increase the TLM-T simulation speed, the VCI targets are generally described by reactive call-back functions.

E) VCI Interconnect 6



Therefore, there is no thread, and no local clock in the TLM-T module describing a VCI target. For a VCI target,
the local clock is actually the clock associated to the corresponding arbitration thread contained in the VeiVgmn
module.

As described in Figure 4, when a VCI command packet - sent by the corresponding arbitration thread - is received
by a VCI target, two synchronization mechanisms are activated :

® The cmdReceived() function sends a VCI response packet with a date to the source initiator, through the
VciVgmn response network. The corresponding date can be used to update the initiator local clock.

® The cmdReceived() function returns a date to the arbitration thread. This date is used to update the
arbitration thread local clock.

0

F) Interrupt modeling

Interrupts are asynchronous events that are not transported by the VCI network.

As illustrated in Figure 5, each interrupt line is modeled by a specific point to point, uni-directional channel. It use
two ports of type SynchroOutPort and SynchroIlnPort that must be declared as member variables of the source
and destination modules respectively.

0

F.1) Source modeling

The source module (named my_source in this example) must contain a member variable p_irq of type
SynchroQOutPort. To activate, or desactivate an interruption, the source module must use the send() method, that is
a member function of the SynchroOutPort class. Those interrupt packets transport both a Boolean, and a date. The
send() prototype is defined as follows :

void send( bool wval, uint32_t time)

F.2) Destination modeling

The destination module (named here my_processor) must contain a member variable p_irq of type
SynchrolnPortt, and a call-back function (named here irqReceived() that is executed when an interrupt packet is
received on the p_irq port.

A link between the p_irq port and the call-back function mus be established by the port constructor in the
constructor of the class my_processor :

p_irg(?irg?, this, &my_processor::irgReceived)

In the Parallel Discrete Event Simulation, the pessimistic approach suppose that any PDES process is not allowed
to update his local time until he has received messages on all input ports with dates larger than his local time.

Therefore, a SC_THREAD modeling the behavior of a processor containing an SynchroInPort should in principle
wait a dated packet on this interrupt port before executing instructions. Such behavior would be very inefficient,

and could create dead-lock situations.

The recommended policy for handling interrupts is the following:

F) Interrupt modeling 7



¢ The call-back function irqReceived() sets the member variables m_irqpending and m_irqtime, when a
interrupt packet is received on the p_irq port.

¢ The execLoop() thread must test the m_irqgpending variable at each cycle (i.e. in each iteration of the
infinite loop).

e If there is no interrupt pending, the thread continues execution. If an interrupt is pending, and the interrupt
date is larger than the local time, the thread continues execution. If the interrupt date is equal or smaller
than the local time, the interrupt is handled.

Such violation of the the pessimistic parallel simulation create a loss of accuracy on the interrupt handling date.
This inaccuracy in the TLM-T simulation is acceptable, as interrupts are asynchronous events, and the timing error
is bounded by the m_lookahead parameter.

F.3) Processor with interrupt example

class my_processor : tlmt::BaseModule {
public:
SynchroInPort p_irqg;

////// constructor
my_processor (sc_module_name name,
uint32_t lookahead)

p_irg(?irg?, this, &my_initiator::irgReceived),
m_time (0),
tlmt::BaseModule (name)
{
m_lookahed = lookahead;
m_counter = 0;
m_irgset = false;
SC_THREAD (execLoop) ;

} // end constructor

private:
tlmt_time m_time; // local clock
bool m_irgpendig; // pending interrupt request
uint32_t m_irgtime; // irqg date
uint32_t m_counter; // iteration counter
uint32_t m_lookahed; // lookahead value

///77/77//7/7//// thread
void execLoop ()

{

while (1) {

// test interrupts
if (m_irgpending && (m_irgtime <= m_time.getTime())) {
// traitement interrupt

}

// lookahead management
m_counter++ ;
if (m_counter >= m_lookahead) {

m_counter = 0 ;
wait (SC_ZERO_TIME) ;
} // end if

m_time.addtime (1) ;
} // end while
} // end execLoop ()

L1717 77 100777770777 77777777777777777777

void irgReceived(bool val, sc_time time)

{

m_irgpending = val;

F.2) Destination modeling



m_irgtime = time;
} // end irgReceived()
} // end class my_processor

F.3) Processor with interrupt example



