Writing TLM2.0-compliant timed SystemC simulation
models for SoCLib

Authors : Alain Greiner, Frangois Pécheux, Emmanuel Viaud, Nicolas Pouillon, Aline Vieira de Mello

1. A) Introduction
2. B) Single VCI initiator and single VCI target
3. ©) VClI initiator Modeling
1. C.1) Sending a VCI command packet
2. C.2) Receiving a VCI response packet
3. C.3) Initiator Constructor
4. C.4) Lookahead parameter
5. C.4) VCl initiator example
4. D) VCI target modeling
1. D.1) Receiving a VCI command packet
2. D.2) Sending a VCI response packet
3. D.3) Target Constructor
4. D.4) VCI target example
5. E) VCI Interconnect modelling
1. E.1) Generic network modeling
2. E.2) Arbitration Policy

A) Introduction

This document is still under development. It describes the modeling rules for writing TLM-T SystemC simulation
models for SOoCLib that are compliant with the new TLM2.0 OSCI standard. These rules enforce the PDES
(Parallel Discrete Event Simulation) principles. Each PDES process involved in the simulation has its own local
time, and PDES processes synchronize through messages piggybacked with time information. Models complying to
these rules can be used with the "standard" OSCI simulation engine (SystemC 2.x) and the TLM2.0 protocol, but
can also be used also with others simulation engines, especially distributed, parallelized simulation engines.

The interested user should also look at the general SoCLib rules.

B) Single VCI initiator and single VCI target

Figure 1 presents a minimal TLM-T system containing one single initiator, my_initiator , and one single target,
my_target . The my_initiator module behavior is modeled by the SC_THREAD execLoop(), that contains an
infinite loop. The call-back function my_nb_transport_bw() is executed when a VCI response packet is received
by the initiator module.

0

Unlike the initiator, the target module has a purely reactive behaviour and is therefore modeled as a simple
call-back function. In other words, there is no need to use a SC_THREAD for these simple target components: the
target behaviour is entirely described by the call-back function my_nb_transport_fw(), that is executed when a
VCI command packet is received by the target module.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels: one to transmit the VCI command packet, one to transmit the VCI response packet.

B) Single VCl initiator and single VCI target 1

C) VCl initiator Modeling

In the proposed example, the initiator module is modeled by the my_initiator class. This class inherits from the
standard SystemC sc_core::sc_module class, that acts as the root class for all TLM-T modules.

The initiator local time is contained in a member variable named m_localTime, of type sc_core::sc_time. The
local time can be accessed with the following accessors: addLocalTime(), setLocalTime() and getLocalTime().

sc_core::sc_time m_localTime; // the initiator local time

void addLocalTime (sc_core::sc_time t); // add a value to the local time
void setLocalTime (sc_core::sc_time& t); // set the local time
sc_core::sc_time getLocalTime (void); // get the local time

The initiator activity corresponds to the boolean member m_activity that indicates if the initiator is currently active
(i.e. true, wants to participate in the arbitration in the interconnect) or inactive (i.e. false, does not want to
participate in the arbitration in the interconnect). The corresponding access functions are setActivity() and
getActivity().

bool m_activity;

void setActivity (bool t); // set the activity status (true if the comg
bool getActivity (void); // get the activity state

The execLoop() method, describing the initiator behaviour must be declared as a member function of the
my_initiator class.

Finally, the class my_initiator must contain a member variable p_vci_init, of type tlmt_simple_initiator_socket.
This member variable represents the VCI initiator port. It has 3 template parameters, two of which are used to help
connecting the response callback function (my_initiator in the example, first template parameter) to the port and
defining the port type (soclib_vci_types in the following example, third template parameter). soclib_vci_types is
indeed a C++ structure containing two typedef: the first typedef defines the payload type as VCI, and the other
defines the TLM phase type. The phase type can either be TLMT_CMD (i.e. the transaction indicates the emission
of a command by an initiator and its reception by a target), TLMT_RSP (i.e. the transaction indicates the emission
of a response by a target and its reception by an initiator), or TLMT_INFO (i.e. a TLM-T transaction emitted by
one side of a link (vci, irq or fifo) to get information such as time and activity on the other side of the link).

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the nb_transport_fw() method, that is a
member function of the p_vei_init port. The prototype of this method is the following:

tlm::tlm_sync_enum nb_transport_fw /// sync status

(soclib_vci_types::tlm_payload_type &payload, ///< VCI payload pointer
soclib_vci_types::tlm_phase_type &phase, ///< transaction phase
sc_core::sc_time stime); ///< time

The first parameter of this member function is the VCI packet, the second represents the phase (TLMT_CMD in
this case), and the third parameter contains the initiator local time.

To prepare a VCI packet for sending, the execLoop function must declare two objects locally, payload and phase.

soclib_vci_types::tlm_payload_type payload;
soclib_vci_types::tlm_phase_type phase;

C) VCl initiator Modeling 2

A payload of type soclib_vci_types::tlm_payload_type corresponds to a tlmt_vci_transaction. It contains three
groups of information:

e TLM2.0 related fields
e TLM-T related fields
e V(I related fields

The contents of a tlmt_vei_transaction is defined below:

class tlmt_vci_transaction

{

private:
// TLM2.0 related fields and common structure

sc_dt::uinté64 m_address; // address
unsigned char* m_data; // buf
unsigned int m_length; // nword
tlmt_response_status m_response_status; // rerror
bool m_dmi; // nothing
unsigned char* m_byte_enable; // be
unsigned int m_byte_enable_length;

unsigned int m_streaming_width; //

// TLM-T related fields

bool* m_activity_ptr;
sSc_core::sc_time* m_local_time_ptr;

// VCI related fields

tlmt_command m_command; // cmd

unsigned int m_src_id; // srcid
unsigned int m_trd_id; // trdid
unsigned int m_pkt_id; // pktid

The TLM2.0 compliant accessors allow to set the TLM2.0 related fields, such as the transaction address, the byte
enable array pointer and its associated size in bytes, and the data array pointer and its associated size in bytes. The
byte enable array allows to build versatile packets thanks to a powerful but slow data masking scheme. Further
experiments are currently done to evaluate the performance degradation incurred by the byte formatting. It is
therefore possible that the types of the m_data and m_byte_enable of the timt_vci_transaction will be changed to
uint32* in a near future.

Dedicated VCI accessors are used to define the VCI transaction type, that can either be set_read() (for read
command), set_write() (for write command),set_locked_read() (for atomic locked read), and set_store_cond()
(for atomic store conditional). The set_src_id(), set_trd_id() and set_pkt_id() functions respectively set the VCI
source, thread and packet identifiers. The following example describes a VCI write command:

payload.set_address (0x10000000);//ram 0
payvload.set_byte_enable_ptr (byte_enable);
payvload.set_byte_enable_length (nbytes);
payload.set_data_ptr (data);

payload.set_data_length (nbytes); // 5 words of 32 bits

payload.set_write();
payload.set_src_id(m_id);
payload.set_trd_id(0);
payvload.set_pkt_id(pktid);

phase= soclib::tlmt::TLMT_CMD;
sendTime = getLocalTime () ;

C.1) Sending a VCI command packet 3

p_vci_init->nb_transport_fw(payload, phase, sendTime);

The nb_transport_fw() function is non-blocking. To implement a blocking transaction (such as a cache line read,
where the processor is stalled during the VCI transaction), the model designer must use the SystemC
sc_core::wait(x) primitive (x being of type sc_core::sc_event): the execLoop() thread is then suspended, and will
be reactivated when the response packet is actually received.

C.2) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class
my_initiator. This call-back function (named vei_rsp_received() in the example), must be declared in the
my_initiator class and is executed each time a VCI response packet is received on the p_vei_init port. The
function name is not constrained, but the arguments must respect the following prototype:

tlm::tlm_sync_enum vci_rsp_received

(soclib_vci_types::tlm_payload_type &payload, // payload
soclib_vci_types::tlm_phase_type &phase, // transaction phase
sc_core::sc_time stime) ; // resp time

The return value (type tlm::tlm_sync_enum) must be sytematically set to tlm:: TLM_COMPLETED in this
implementation The function parameters are identical to those described in the forward transport function

In the general case, the actions executed by the call-back function depend on the response transaction type
(m_command field), as well as the pktid and trdid fields. For sake of simplicity, the call-back function proposed
below does not make any distinction between VCI transaction types.

C.3) Initiator Constructor

The constructor of the class my_initiator must initialize all the member variables, including the p_vei_init port.
The vei_rsp_received() call-back function being executed in the context of the thread sending the response packet,
a link between the p_vci_init port and this call-back function must be established.

The my_initiator constructor for the p_vei_init object must be called with the following arguments:

p_vci_init.register_nb_transport_bw(this, &my_initiator::vci_rsp_received);

C.4) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after at some point, in order to allow the other threads to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches).

To solve this issue, it is necessary to define -for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it is automatically stopped. The

lookahead parameter allows the system designer to bound the de-synchronization time interval between threads.

A small value for this parameter results in a better timing accuracy for the simulation, but implies a larger number
of context switches, and a slower simulation speed.

C.2) Receiving a VCI response packet 4

C.4) VCl initiator example

/1117700770777 777777777/7/7 /7 my_initiator.h ///////17777 77077777777 777777777

/1117700770777 77777777777 7 my_initiator.cpp ////////1/1117777777777777777777

D) VCI target modeling

In the proposed example, the my_target component handles all VCI commands in the same way, and there is no
error management.

The class my_target inherits from the class sc_core::sc_module. The class my_target contains a member variable
p_vci_target of type tlmt_simple_target_socket. This object has 3 template parameters, that are identical to those
used for declaring initiator ports (see above).

D.1) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
my_target. This call-back function (named vci_cmd_received() in the example), will be executed each time a VCI
command packet is received on the p_vci_target port. The function name is not constrained, but the arguments
must respect the following prototype:

tlm::tlm_sync_enum vci_cmd_received

(soclib_vci_types::tlm_payload_type &payload, // VCI payload pointer
soclib_vci_types::tlm_phase_type &phase, // transaction phase
sc_core::sc_time stime) ; // time

D.2) Sending a VCI response packet

To send a VCI response packet the call-back function vei_cmd_received() must use the nb_transport_bw()
method, that is a member function of the class tlmt_simple_target_socket, and has the same arguments as the
nb_transport_fw() function. Respecting the general TLM2.0 policy, the payload argument refers to the same
tlmt_vci_transaction object for both the nb_transport_fw() and nb_transport_bw() functions, and the associated
call-back functions. The set_response_status field must be documented for all transaction types, but only two
values are used in this implementation:

e TLMT_OK_RESPONSE
e TLMT_ERROR_RESPONSE

For a reactive target, the response packet time is computed as the command packet time plus the target intrinsic
latency.

payvload.set_response_status (soclib::tlmt::TLMT_OK_RESPONSE) ;
phase = soclib::tlmt::TLMT_RSP;

time = time + (nwords * UNIT_TIME);
p_vci_target->nb_transport_bw(payload, phase, time);

D.3) Target Constructor

D) VCI target modeling 5

The constructor of the class my_target must initialize all the member variables, including the p_vci_target port.
The vei_cmd_received() call-back function being executed in the context of the thread sending the command
packet, a link between the p_vci_target port and the call-back function must be established. The my_target
constructor must be called with the following arguments:

p_vci_target.register_nb_transport_fw(this, &my_target::vci_cmd_received);

D.4) VCI target example

/1117777777777 777777777777 my_target.nh ////////////777//7/77777//777/7/1//

/111777777077 77777777777/77 my_target.cpp ///////////1///1///1///1//1/////

E) VCI Interconnect modelling

The VCI interconnect used for the TLM-T simulation is a generic simulation model, named VciVgmn. The two
main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the
network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled
as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts
can appear at any intermediate switch. In the VeiVgmn network described in Figure 2.b, conflicts can only happen
at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

0

E.1) Generic network modeling

There is actually two fully independent networks for VCI command packets and VCI response
packets. There is a routing function for each input port, and an arbitration function for each output
port, but the two networks are not symmetrical :

¢ For the command network, the arbitration policy is distributed: there is one arbitration thread for each
output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a
SC_THREAD, and contains a local clock.

¢ For the response network, there are no conflicts, and there is no need for arbitration. Therefore, there is no
thread (and no local time) and the response network is implemented by simple function calls.

This is illustrated in Figure 3 for a network with 2 initiators and three targets :

0

E.2) Arbitration Policy

As described above, there is one emd_arbitration thread associated to each VCI target. This thread is in charge of
selecting one timed request between all possible requesters, and to forward it to the target. According to the PDES
principles, the arbitration thread must select the request with the smallest timestamp. The arbitration process must
take into account the actual state of the VCI initiators: For example a DMA coprocessor that has not yet been
activated will not send request and should not participate in the arbitration process. As a general rule, each VCI
initiator must define an active boolean flag, defining if it should participate to the arbitration. This active flag is

E) VCI Interconnect modelling 6

always set to true for general purpose processors. Any arbitration thread receiving a timed request is resumed. It
must obtain an up to date timing & activity information for all its input channels before making any decision. To do
that, the LocalTime and ActivityStatus of all VCI initiators are considered as global variables, that can be accessed
(for read only) by all arbitration threads. The arbitration policy is the following : The arbitration thread scans all its
input channels, and selects the smallest time between the active initiators. If there is a request, this request is
forwarded to the target, and the arbitration thread local time is updated. If not, the thread is descheduled and will be
resumed when it receives a new request.

For efficiency reasons, in this implementation, each arbitration thread constructs - during elaboration of the
simulation - two local array of pointers (indexed by the input channel index) to access the LocalTime and
ActivityStatus variables of the corresponding VClI initiators. To get this information, each arbitration thread uses
the nb_transport_bw() function on all its VCI target ports, with a a dedicated phase called

soclib::timt:: TLMT _INFO. The payload argument refers to the same timt_vci_transaction object as the two other
phases (TLMT _CMD and TLMT_RSP).

for (size_t 1=0;i<m_nbinit;i++) {
phase = soclib::tlmt::TLMT_INFO;
m_RspArbCmdRout [1]->p_vci->nb_transport_bw (payload, phase, rspTime);
m_arrayl[i].activity = payload.get_activity_ptr();
m_arrayl[i].time = payload.get_local_time_ptr();

As the net-list of the simulated pltform mus be explicitely defined before constructing those LocalTime and
ActivityStatus arrays, the vgmn hardware component provides an utility function fill_time_activity_arrays() that
must be called in the SystemC top-cell, before starting the simulation.

E.2) Arbitration Policy 7

