
Writing efficient TLM-T SystemC simulation models
for SoCLib
Authors : Alain Greiner, François Pécheux, Emmanuel Viaud, Nicolas Pouillon

A) Introduction1.
B) Single VCI initiator and single VCI target2.
C) Initiator Modeling

C.1) Sending a VCI command packet1.
C.2) Receiving a VCI response packet2.
C.3) Initiator Constructor3.
C.4) Lookahead parameter4.
C.4) TLM-T initiator example5.

3.

D) Target Modeling
D.1) Receiving a VCI command packet1.
D.2) Sending a VCI response packet2.
D.3) Target Constructor3.
D.4) TLM-T target example4.

4.

A) Introduction
This document describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib. Those
rules enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the
simulation has is own, local time, and processes synchronize through timed messages. Models complying with
those rules can be used with the "standard" OSCI simulation engine (SystemC 2.x), but can be used also with others
simulation engines, especially distributed, parallelized simulation engines.

Besides you may also want to follow the general SoCLib rules.

B) Single VCI initiator and single VCI target
Figure 1 presents a minimal system containing one single initiator, and one single target. In the proposed example,
the initiator module doesn't contains any parallelism, and can be modeled by a single SC_THREAD, describing a
single PDES process. The activity of the my_initiator module is described by the SC_THREAD execLoop(), that
contain an infinite loop. The variable m_time represents the PDES process local time.

Contrary to the initiator, the target module has a purely reactive behaviour. There is no need to use a SC_THREAD
to describe the target behaviour : A simple method is enough.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels : one to transmit the VCI command packet, one to transmit the VCI response packet.

C) Initiator Modeling
In the proposed example, the initiator module is modeled by the my_initiator class. This class inherit the
BaseModule class, that is the basis for all TLM-T modules. As there is only one thread in this module, there is only
one member variable time of type tlmt_time. This object can be accessed through the getTime(), addTime() and
setTime() methods.

C) Initiator Modeling 1

The execLoop() method, describing the initiator activity must be declared as a member function of the
my_initiator class.

Finally, the class my_initiator must contain a member variable p_vci, of type VciInitiatorPort. This object has a
template parameter <vci_param> defining the widths of the VCI ADRESS & DATA fields.

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the cmdSend() method, that is a member
function of the p_vci port. The prototype is the following:

void cmdSend(vci_cmd_t *cmd, // VCI command packet
 sc_time time); // initiator local time

The informations transported by a VCI command packet are defined below:

class vci_cmd_t {
vci_command_t cmd; // VCI transaction type
vci_address_t *address; // pointer to an array of addresses on the target side
uint32_t *be; // pointer to an array of byte_enable signals
bool contig; // contiguous addresses (when true)
vci_param::vci_data_t *buf; // pointer to the local buffer on the initiator
uint32_t length; // number of words in the packet
bool eop; // end of packet marker
uint32_t srcid; // SRCID VCI
uint32_t trdid; // TRDID VCI
uint32_t pktid; // PKTID VCI
}

The possible values for the cmd fied are VCI_CMD_READ, VCI_CMD_WRITE, VCI_CMD_READLINKED,
and VCI_CMD_STORECONDITIONAL Le champ address contient un ensemble d?adresses valides dans l?espace
mémoire partagé du système modélisé. The contig field can be used for optimisation.

The cmdSend() function is non-blocking. To implement a blocking transaction (such as a cache line read, where
the processor is frozen during the VCI transaction), the model designer must use the wait() method, that is a
member function of the VciInitiatorPort class. The execLoop() thread is suspended. It will be activated when the
response packet is received by the notify() method, that is also a member function of the VciInitiatorPort.

C.2) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class
my_initiator. This call-back function (named rspReceived() in the example), will be executed each time a VCI
response packet is received on the p_vci port. The function name is not constrained, but the arguments must respect
the following prototype:

void rspReceived(vci_rsp_t *rsp,
 sc_time time)

The informations transported by a VCI command packet are defined below:

class vci_rsp_t {
vci_command_t cmd; // VCI transaction type
uint32_t length; // number of words in the packet
bool eop; // end of packet marker
uint32_t srcid; // SRCID VCI
uint32_t trdid; // TRDID VCI
uint32_t pktid; // PKTID VCI

C.1) Sending a VCI command packet 2

}

The actions executed by the call-back function depend on the transaction type (cmd field), as well as the pktid and
trdid fields. In the proposed example :

In case of of a blocking read , the call-back function updates the local time, and activates the suspended
threadwith the by the notify() method.

•

In case of a non-blocking write, the call-back function does nothing.•

C.3) Initiator Constructor

The constructor of the classmy_initiator must initialize all the member variables, including the p_vci port. The
rspReceived() call-back function being executed in the context of the thread sending the response packet, a link
between the p_vci port and the call-back function must be established. Moreover, the p_vci port must contain a
pointer to the initiator local time. The VciInitiatorPort constructor must be called with the following arguments:

p_vci(?vci?, this, &my_initiator::rspReceived, &m_time);

C.4) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after a given time, in order to allow the other threds to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches). This can block the simulation.

To solve this problem, it is necessary to define - for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it stops. The lookahead
parameter allows the system designer to bound the de-synchronization between threads. A small value for this
parameter result in a better timing accuracy for the simulation, but implies a larger number of context switch, and a
slower simulation speed.

C.4) TLM-T initiator example
template <typename vci_param>
class my_initiator : Tlmt::BaseModule {
public:
 VciInitiatorPort <vci_param> p_vci;

 //////// constructor
 my_initiator (sc_module_name name,
 uint32_t initiatorIndex
 uint32_t lookahead) :
 p_vci(?vci?, this, &my_initiator::rspReceived, &m_time),
 BaseModule(name),
 m_time(0),
 {
 m_index = InitiatorIndex;
 m_lookahed = lookahead;
 m_counter = 0;
 SC_THREAD(execLoop);
 } // end constructor

private:
 tlmt_Time m_time; // local clock
 uint32_t m_index; // initiator index
 uint32_t m_counter; // iteration counter
 uint32_t m_lookahed; // lookahead value

C.2) Receiving a VCI response packet 3

 vci_param::data_t m_data[8]; // local buffer
 vci_cmd_t m_cmd; // paquet VCI commande

 //////// thread
 void execLoop()
 {
 while(1) {
 ?
 m_cmd.cmd = VCI_CMD_READ;
 p_vci.cmdSend(&m_cmd, m_time.getTime()); // lecture bloquante
 p_vci.wait();
 ?
 m_cmd.cmd = VCI_CMD_WRITE;
 p_vci.send(VCI_CMD_WRITE,?);
 p_vci.cmdSend(&m_cmd, m_time.getTime()); // écriture non bloquante
 ...
 // lookahead management
 m_counter++ ;
 if (m_counter >= m_lookahead) {
 m_counter = 0 ;
 wait(SC_ZERO_TIME) ;
 } // end if
 m_time.addtime(1) ;
 } // end while
 } // end execLoop()

 //////////////// call-back function
 void rspReceived(vci_cmd_t *cmd, sc_time rsp_time)
 {
 if(cmd == VCI_CMD_READ) {
 m_time.set_time(rsp_time + length);
 p_vci.notify() ;
 }
 } // end rspReceived()
} // end class my_initiator

D) Target Modeling
In the proposed example, the target handle two types of command : a read burst of 8 words, and a write burst of 8
words. To simplify the model, there is no error management.

The class my_target inherit the class BaseModule, that is the basis for all TLM-T modules. The class my_target
contains a member variable p_vci of type VciTargetPort. This object has a template parameter <vci_param>
defining the widths of the VCI ADRESS & DATA fields.

D.1) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
my_target. This call-back function (named cmdReceived() in the example), will be executed each time a VCI
command packet is received on the p_vci port. The function name is not constrained, but the arguments must
respect the following prototype:

void cmdReceived(vci_cmd_t *cmd,
 sc_time time)

For the read and write transactions, the actual data transfer is performed by this cmdReceived() function. To avoid
multiple data copies, only the pointer on the initiator data buffer is transported in the VCI command pacquet
(source buffer for a write transaction, or destination buffer for a read transaction).

D) Target Modeling 4

D.2) Sending a VCI response packet

To send a VCI response packet the cmdReceived() function must use the rspSend() method, that is a member
function of the class VciTargetPort, and has the following prototype:

void rspSend(vci_rsp_t *cmd,
 sc_time time)

For a reactive target, the response packet date is computed as the command packet date plus the target intrinsic
latency.

D.3) Target Constructor

The constructor of the classmy_target must initialize all the member variables, including the p_vci port. The
cmdReceived() call-back function being executed in the context of the thread sending the command packet, a link
between the p_vci port and the call-back function must be established. The VciTargetPort constructor must be
called with the following arguments:

p_vci(?vci?, this, &my_initiator::cmdReceived);

D.4) TLM-T target example
template <typename vci_param>
class my_target : Tlmt::BaseModule {
public:
 VciTargetPort<vci_param> p_vci;

 ////////////// constructor
 my_target (sc_module_name name,
 uint32_t targetIndex,
 sc_time latency):
 p_vci(?vci?,this, &my_target::cmdReceived),
 BaseModule(name)
 {
 m_latency = latency;
 m_index = targetIndex;
 } // end constructor

private:
 vci_param::data_t m_data[8]; // local buffer
 sc_time m_latency; // target latency
 uint32_t m_index; // target index
 vci_rsp_t m_rsp; // paquet VCI réponse

 /////////////// call-back function
 sc_time cmdReceived(vci_cmd_t *cmd,
 sc_time cmd_time)
 {
 if(cmd->cmd == VCI_CMD_WRITE) {
 for(int i = 0 ; i < length ; i++) m_data[i] = cmd->buf[i];
 }
 if(cmd->cmd == VCI_CMD_READ) {
 for(int i = 0 ; i < length ; i++) cmd->buf[i] = m_data[i];
 }
 m_rsp.srcid = cmd->srcid;
 m_rsp.trdid = cmd->trdid;
 m_rsp.pktid = cmd>pktid;
 m_rsp.length = cmd->length;
 m_rsp.error = 0;
 rsp_time = cmd_time + latency;

D.2) Sending a VCI response packet 5

 p_vci.rspSend(&m_rsp, rsp_time) ;
 return (rsp_time + (sc_time)cmd->length);
 } // end cmdReceived()
} // end class my_target

D.4) TLM-T target example 6

