
Writing TLM2.0-compliant timed SystemC simulation
models for SoCLib
Authors : Alain Greiner, François Pêcheux, Aline Vieira de Mello

A) Introduction1.
B) Single VCI initiator and single VCI target2.
C) VCI Transaction in TLM-T3.
D) VCI initiator Modeling

D.1) Member variables & methods1.
D.2) Sending a VCI command packet2.
D.3) Receiving a VCI response packet3.
D.4) Initiator Constructor4.
D.5) Lookahead parameter5.
D.6) VCI initiator example6.

4.

E) VCI target modeling
E.1) Member variables & methods1.
E.2) Receiving a VCI command packet2.
E.3) Sending a VCI response packet3.
E.4) Target Constructor4.
E.5) VCI target example5.

5.

F) VCI Interconnect modelling
F.1) Generic network modeling1.
F.2) Arbitration Policy2.

6.

A) Introduction
This document is still under development.

It describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib that are compliant with
the new TLM2.0 OSCI standard. These rules enforce the PDES (Parallel Discrete Event Simulation) principles. In
the TLM-T approach, we don't use the SystemC global time, as each PDES process involved in the simulation has
its own local time. PDES processes (implemented as SC_THREADS) synchronize through messages piggybacked
with time information. Models complying to these rules can be used with the "standard" OSCI simulation engine
(SystemC 2.x) and the TLM2.0 library, but can also be used also with others simulation engines, especially
distributed, parallelized simulation engines.

The examples presented below use the VCI/OCP communication protocol selected by the SoCLib project, but the
TLM-T approach described here is very flexible, and is not limited to the VCI/OCP communication protocol.

The interested user should also look at the general SoCLib rules.

B) Single VCI initiator and single VCI target
Figure 1 presents a minimal system containing one single VCI initiator, my_initiator , and one single VCI target,
my_target . The initiator behavior is modeled by the SC_THREAD execLoop(), that contains an infinite loop. The
call-back function vci_rsp_received() is executed when a VCI response packet is received by the initiator module.

B) Single VCI initiator and single VCI target 1

Unlike the initiator, the target module has a purely reactive behaviour and is therefore modeled as a simple
call-back function. In other words, there is no need to use a SC_THREAD for this simple target component: the
target behaviour is entirely described by the call-back function vci_cmd_received(), that is executed when a VCI
command packet is received by the target module.

The VCI communication channel is a point-to-point bi-directional channel, encapsulating two separated
uni-directional channels: one to transmit the VCI command packet, one to transmit the VCI response packet.

C) VCI Transaction in TLM-T
The TLM2.0 standard allows the user to redefine both the payload and the phases of the transactions. Two classes
have been defined in soclib_vci_types : a tlmt_vci_transaction and a tlmt_phase".

The payload of a tlmt_vci_transaction contains three groups of information:

TLM2.0 generic fields•
TLM-T specific fields•
VCI specific fields

class tlmt_vci_transaction
{
 ...
private:

 // TLM2.0 related fields and common structure

 sc_dt::uint64 m_address; // address
 unsigned char* m_data; // data buffer
 unsigned int m_length; // number of bytes
 tlm_response_status m_response_status; // rerror
 unsigned char* m_byte_enable; // be buffer
 unsigned int m_streaming_width; //

 // TLM-T related fields

 bool* m_activity_ptr;
 sc_core::sc_time* m_local_time_ptr;

 // VCI related fields

 vci_command m_command; // cmd
 unsigned int m_src_id; // srcid
 unsigned int m_trd_id; // trdid
 unsigned int m_pkt_id; // pktid

•

The TLM2.0 compliant accessors allow to set the TLM2.0 related fields, such as the transaction address, the data &
byte enable arrays pointers and its associated size in bytes.

Dedicated VCI accessors are used to define the VCI transaction type, that can either be set_read() (for read
command), set_write() (for write command),set_locked_read() (for atomic locked read), and set_store_cond()
(for atomic store conditional). The set_src_id(), set_trd_id() and set_pkt_id() functions respectively set the VCI
source, thread and packet identifiers.

NB : The byte array approach defined by TLM2.0 can degrade the simulation speed, as the existing SoCLib models
use uint32_t arrays to model both the embedded memory and the caches... Experiments are currently in progress to
evaluate the performance degradation incurred by this byte formatting. It is therefore possible that the types of the
m_data and m_byte_enable of the tlmt_vci_transaction will be changed to uint32* .

C) VCI Transaction in TLM-T 2

D) VCI initiator Modeling

D.1) Member variables & methods

In the proposed example, the initiator module is modeled by the my_initiator class. This class inherits from the
standard SystemC sc_core::sc_module class, that acts as the root class for all TLM-T modules.

The initiator local time is contained in a member variable named m_localTime, of type sc_core::sc_time. The
local time can be accessed with the following accessors: addLocalTime(), setLocalTime() and getLocalTime().

 sc_core::sc_time m_localTime; // the initiator local time
 ...
 void addLocalTime(sc_core::sc_time t); // add an increment to the local time
 void setLocalTime(sc_core::sc_time& t); // set the local time
 sc_core::sc_time getLocalTime(void); // get the local time

The boolean member variable m_activity indicates if the initiator is currently active. It is used by the arbitration
threads contained in the vci_vgmn interconnect, as described in section F. The corresponding access functions are
setActivity() and getActivity().

 bool m_activity;
 ...
 void setActivity(bool t); // set the activity status (true if the component is active)
 bool getActivity(void); // get the activity state

The execLoop() method, describing the initiator behaviour must be declared as a member function.

The my_initiator class must define a call-back function to handle the VCI response packets.

Finally, the it must contain a member variable p_vci_init, of type tlmt_simple_initiator_socket. This member
variable represents the VCI initiator port.

D.2) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the nb_transport_fw() method, defined by
TLM2.0, that is a member function of the p_vci_init port. The prototype of this method is the following:

 tlm::tlm_sync_enum nb_transport_fw
 (soclib_vci_types::tlm_payload_type &payload, // VCI payload pointer
 soclib_vci_types::tlm_phase_type &phase, // transaction phase (TLMT_CMD)
 sc_core::sc_time &time); // local time

The first argument is a pointer to the payload, the second represents the phase, and the third argument contains the
initiator local time.

The nb_transport_fw() function is non-blocking. To implement a blocking transaction (such as a cache line read,
where the processor is stalled during the VCI transaction), the model designer must use the SystemC
sc_core::wait(x) primitive (x being of type sc_core::sc_event): the execLoop() thread is then suspended, and will
be reactivated when the response packet is actually received.

D.3) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class

D) VCI initiator Modeling 3

my_initiator. This call-back function (named vci_rsp_received() in the example), must be linked to the p_vci_init
port, and is executed each time a VCI response packet is received on the p_vci_init port. The function name is not
constrained, but the arguments must respect the following prototype:

 tlm::tlm_sync_enum vci_rsp_received
 (soclib_vci_types::tlm_payload_type &payload, // payload
 soclib_vci_types::tlm_phase_type &phase, // transaction phase (TLMT_RSP)
 sc_core::sc_time &time); // response time

The return value (type tlm::tlm_sync_enum) is not used in this tlmt implementation, and must be sytematically set
to tlm::TLM_COMPLETED.

In the general case, the actions executed by the call-back function depend on the transaction type defined in the
payload (m_command, m_pktid and m_trdid fields). For sake of simplicity, the call-back function proposed in
the example below does not make any distinction between transaction types.

D.4) Initiator Constructor

The constructor of the class my_initiator must initialize all the member variables, including the p_vci_init port.
The vci_rsp_received() call-back function being executed in the context of the thread sending the response packet,
a link between the p_vci_init port and this call-back function must be established.

The constructor for the p_vci_init port must be called with the following arguments:

 p_vci_init.register_nb_transport_bw(this, &my_initiator::vci_rsp_received);

D.5) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after at some point, in order to allow the other threads to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches).

To solve this issue, it is necessary to define -for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it is descheduled. The lookahead
parameter allows the system designer to bound the de-synchronization time interval between threads.

A small value for this parameter results in a better timing accuracy for the simulation, but implies a larger number
of context switches, and a slower simulation speed.

D.6) VCI initiator example
////////////////////////// my_initiator.h ////////////////////////////////

////////////////////////// my_initiator.cpp ////////////////////////////////

E) VCI target modeling
In the proposed example, the my_target component handles all VCI commands in the same way, and there is no
error management.

E) VCI target modeling 4

E.1) Member variables & methods

The class my_target inherits from the class sc_core::sc_module. The class my_target contains a member variable
p_vci_target of type tlmt_simple_target_socket, representing the VCI target port. It contains a call-back function
to handle the received VCI command packets, as described below.

E.2) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
my_target. This call-back function (named vci_cmd_received() in the example), is executed each time a VCI
command packet is received on the p_vci_target port. The function name is not constrained, but the arguments
must respect the following prototype:

 tlm::tlm_sync_enum vci_cmd_received
 (soclib_vci_types::tlm_payload_type &payload, // VCI payload pointer
 soclib_vci_types::tlm_phase_type &phase, // transaction phase
 sc_core::sc_time &time); // time

E.3) Sending a VCI response packet

To send a VCI response packet the call-back function vci_cmd_received() use the nb_transport_bw() method,
that is a member function of the class tlmt_simple_target_socket, and has the same arguments as the
nb_transport_fw() function. Respecting the general TLM2.0 policy, the payload argument refers to the same
tlmt_vci_transaction object for both the nb_transport_fw() and nb_transport_bw() functions, and the associated
call-back functions. The set_response_status field must be documented for all transaction types, but only two
values are used in this TLM-T implementation:

TLMT_OK_RESPONSE•
TLMT_ERROR_RESPONSE•

For a reactive target, the response packet time is computed as the command packet time plus the target intrinsic
latency.

 payload.set_response_status(soclib::tlmt::TLMT_OK_RESPONSE);
 phase = soclib::tlmt::TLMT_RSP;
 time = time + (nwords * UNIT_TIME);
 p_vci_target->nb_transport_bw(payload, phase, time);

E.4) Target Constructor

The constructor of the class my_target must initialize all the member variables, including the p_vci_target port.
The vci_cmd_received() call-back function being executed in the context of the thread sending the command
packet, a link between the p_vci_target port and the call-back function must be established. The my_target
constructor must be called with the following arguments:

 p_vci_target.register_nb_transport_fw(this, &my_target::vci_cmd_received);

E.5) VCI target example
////////////////////////// my_target.h ////////////////////////////////

////////////////////////// my_target.cpp ////////////////////////////////

E.1) Member variables & methods 5

F) VCI Interconnect modelling
The VCI interconnect used for the TLM-T simulation is a generic interconnection network, named VciVgmn. The
two main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the
network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled
as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts
can appear at any intermediate switch. In the VciVgmn network described in Figure 2.b, conflicts can only happen
at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

F.1) Generic network modeling

There is actually two fully independent networks for VCI command packets and VCI response
packets. There is a routing function for each input port, and an arbitration function for each output
port, but the two networks are not symmetrical :

For the command network, the arbitration policy is distributed: there is one arbitration thread for each
output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a
SC_THREAD, and contains a local clock.

•

For the response network, there are no conflicts, and there is no need for arbitration. Therefore, there is no
thread (and no local time) and the response network is implemented by simple function calls.

•

This is illustrated in Figure 3 for a network with 2 initiators and three targets :

F.2) Arbitration Policy

As described above, there is one cmd_arbitration thread associated to each VCI target. This thread is in charge of
selecting one timed request between all possible requesters, and to forward it to the target. According to the PDES
principles, the arbitration thread must select the request with the smallest timestamp. The arbitration process must
take into account the actual state of the VCI initiators: For example a DMA coprocessor that has not yet been
activated will not send request and should not participate in the arbitration process. As a general rule, each VCI
initiator must define an active boolean flag, defining if it should participate to the arbitration. This active flag is
always set to true for general purpose processors. Any arbitration thread receiving a timed request is resumed. It
must obtain an up to date timing & activity information for all its input channels before making any decision. To do
that, the LocalTime and ActivityStatus of all VCI initiators are considered as global variables, that can be accessed
(read only) by all arbitration threads. The arbitration policy is the following : The arbitration thread scans all its
input channels, and selects the smallest time between the active initiators. If there is a request, this request is
forwarded to the target, and the arbitration thread local time is updated. If there is no request from this initiator, the
thread is descheduled and will be resumed when it receives a new request.

For efficiency reasons, in this implementation, each arbitration thread constructs - during elaboration of the
simulation - two local array of pointers (indexed by the input channel index) to access the LocalTime and
ActivityStatus variables of the corresponding VCI initiators. To get this information, each arbitration thread uses
the nb_transport_bw() function on all its VCI target ports, with a a dedicated value for the phase called
soclib::tlmt::TLMT_INFO. The payload argument refers to the same tlmt_vci_transaction object as the two

F) VCI Interconnect modelling 6

other phase values (TLMT_CMD and TLMT_RSP).

for (size_t i=0;i<m_nbinit;i++) {
 phase = soclib::tlmt::TLMT_INFO;
 m_RspArbCmdRout[i]->p_vci->nb_transport_bw(payload, phase, rspTime);
 m_array[i].ActivityStatus = payload.get_activity_ptr();
 m_array[i].LocalTime = payload.get_local_time_ptr();
}

As the net-list of the simulated platform mus be explicitely defined before constructing those LocalTime and
ActivityStatus arrays, the vgmn hardware component provides an utility function fill_time_activity_arrays() that
must be called in the SystemC top-cell, before starting the simulation.

F.2) Arbitration Policy 7

