
Writing efficient TLM-T SystemC simulation models
for SoCLib
Authors : Alain Greiner, François Pécheux, Emmanuel Viaud, Nicolas Pouillon

A) Introduction1.
B) Single VCI initiator and single VCI target2.
C) VCI initiator Modeling

C.1) Sending a VCI command packet1.
C.2) Receiving a VCI response packet2.
C.3) Initiator Constructor3.
C.4) Lookahead parameter4.
C.4) VCI initiator example5.

3.

D) VCI target modeling
D.1) Receiving a VCI command packet1.
D.2) Sending a VCI response packet2.
D.3) Target Constructor3.
D.4) VCI target example4.

4.

E) VCI Interconnect
E.1) Generic network modeling1.
E.2) VCI initiators and targets synchronisations2.

5.

F) Interrupt modeling
F.1) Source modeling1.
F.2) Destination modeling2.
F.3) Processor with interrupt example3.

6.

A) Introduction
This document describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib. Those
rules enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the
simulation has is own, local time, and processes synchronize through timed messages. Models complying with
those rules can be used with the "standard" OSCI simulation engine (SystemC 2.x), but can be used also with others
simulation engines, especially distributed, parallelized simulation engines.

Besides you may also want to follow the general SoCLib rules.

B) Single VCI initiator and single VCI target
Figure 1 presents a minimal system containing one single initiator, and one single target. In the proposed example,
the my_initiator module behavior is modeled by the SC_THREAD execLoop(), that contains an infinite loop. The
call-back function rspReceived() is executed when a VCI response packet is received by the initiator module.

Contrary to the initiator, the target module has a purely reactive behaviour. There is no need to use a SC_THREAD
: The target behaviour is entirely described by the call-back function cmdReceived(), that is executed when a VCI
command packet is received by the target module.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels : one to transmit the VCI command packet, one to transmit the VCI response packet.

B) Single VCI initiator and single VCI target 1

C) VCI initiator Modeling
In the proposed example, the initiator module is modeled by the my_initiator class. This class inherit the
BaseModule class, that is the basis for all TLM-T modules. As there is only one thread in this module, there is only
one member variable m_time of type tlmt_time, corresponding to the PDES process local time (H on the figure).
This m_time object can be accessed through the getTime(), addTime() and setTime() methods.

The execLoop() method, describing the initiator activity must be declared as a member function of the
my_initiator class.

Finally, the class my_initiator must contain a member variable p_vci, of type VciInitiatorPort. This object has a
template parameter <vci_param> defining the widths of the VCI ADRESS & DATA fields.

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the cmdSend() method, that is a member
function of the p_vci port. The prototype is the following:

void cmdSend(vci_cmd_t *cmd, // VCI command packet
 uint32_t time); // initiator local time

The informations transported by a VCI command packet are defined below:

class vci_cmd_t {
vci_param::vci_command_t cmd; // VCI transaction type
vci_param::vci_address_t *address; // pointer to an array of addresses on the target side
uint32_t *be; // pointer to an array of byte_enable signals
bool contig; // contiguous addresses (when true)
vci_param::vci_data_t *buf; // pointer to the local buffer on the initiator
uint32_t length; // number of words in the packet
bool eop; // end of packet marker
uint32_t srcid; // VCI Source ID
uint32_t trdid; // VCI Thread ID
uint32_t pktid; // VCI Packet ID
}

The possible values for the cmd fied are vci_param::CMD_READ, vci_param::CMD_WRITE,
vci_param::CMD_READ_LOCKED, and vci_param::CMD_STORE_COND. The contig field can be used for
optimisation.

The cmdSend() function is non-blocking. To implement a blocking transaction (such as a cache line read, where
the processor is frozen during the VCI transaction), the model designer must use the wait() method, that is a
member function of the VciInitiatorPort class. The execLoop() thread is suspended. It will be activated when the
response packet is received by the notify() method, that is also a member function of the VciInitiatorPort.

C.2) Receiving a VCI response packet

To receive a VCI response packet, a call-back function must be defined as a member function of the class
my_initiator. This call-back function (named rspReceived() in the example), will be executed each time a VCI
response packet is received on the p_vci port. The function name is not constrained, but the arguments must respect
the following prototype:

void rspReceived(vci_rsp_t *rsp, uint32_t time)

C) VCI initiator Modeling 2

The informations transported by a VCI command packet are defined below:

class vci_rsp_t {
vci_command_t cmd; // VCI transaction type
uint32_t length; // number of words in the packet
bool eop; // end of packet marker
uint32_t srcid; // VCI Source ID
uint32_t trdid; // VCI Thread ID
uint32_t pktid; // VCI Packet ID
}

The actions executed by the call-back function depend on the transaction type (cmd field), as well as the pktid and
trdid fields.

In the proposed example :

In case of of a blocking read , the call-back function updates the local time, and activates the suspended
thread.

•

In case of a non-blocking write, the call-back function does nothing.•

C.3) Initiator Constructor

The constructor of the class my_initiator must initialize all the member variables, including the p_vci port. The
rspReceived() call-back function being executed in the context of the thread sending the response packet, a link
between the p_vci port and the call-back function must be established. Moreover, the p_vci port must contain a
pointer to the initiator local time.

The VciInitiatorPort constructor must be called with the following arguments:

p_vci(?vci?, this, &my_initiator::rspReceived, &m_time);

C.4) Lookahead parameter

The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the
system must stop execution after at some point, in order to allow the other threads to execute. With the proposed
approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that
has all code and data in the L1 caches).

To solve this problem, it is necessary to define - for each initiator module- a lookahead parameter. This parameter
defines the maximum number of cycles that can be executed by the thread before it stops. The lookahead
parameter allows the system designer to bound the de-synchronization between threads.

A small value for this parameter result in a better timing accuracy for the simulation, but implies a larger number of
context switch, and a slower simulation speed.

C.4) VCI initiator example
template <typename vci_param>
class my_initiator : tlmt::BaseModule {
public:
 VciInitiatorPort <vci_param> p_vci;

 //////// constructor
 my_initiator (sc_module_name name,
 uint32_t initiatorIndex

C.2) Receiving a VCI response packet 3

 uint32_t lookahead) :
 p_vci(?vci?, this, &my_initiator::rspReceived, &m_time),
 tlmt::BaseModule(name),
 m_time(0)
 {
 m_index = InitiatorIndex;
 m_lookahed = lookahead;
 m_counter = 0;
 SC_THREAD(execLoop);
 } // end constructor

private:
 tlmt_time m_time; // local clock
 uint32_t m_index; // initiator index
 uint32_t m_counter; // iteration counter
 uint32_t m_lookahed; // lookahead value
 vci_param::data_t m_data[8]; // local buffer
 vci_cmd_t m_cmd; // paquet VCI commande

 //////// thread
 void execLoop()
 {
 while(1) {
 ?
 m_cmd.cmd = VCI_CMD_READ;
 p_vci.cmdSend(&m_cmd, m_time.getTime()); // lecture bloquante
 p_vci.wait();
 ?
 m_cmd.cmd = VCI_CMD_WRITE;
 p_vci.send(VCI_CMD_WRITE,?);
 p_vci.cmdSend(&m_cmd, m_time.getTime()); // écriture non bloquante
 ...
 // lookahead management
 m_counter++ ;
 if (m_counter >= m_lookahead) {
 m_counter = 0 ;
 wait(SC_ZERO_TIME) ;
 } // end if
 m_time.addtime(1) ;
 } // end while
 } // end execLoop()

 //////////////// call-back function
 void rspReceived(vci_cmd_t *cmd, uint32_t rsp_time)
 {
 if(cmd == VCI_CMD_READ) {
 m_time.set_time(rsp_time + length);
 p_vci.notify() ;
 }
 } // end rspReceived()
} // end class my_initiator

D) VCI target modeling
In the proposed example, the target handle two types of command : a read burst of 8 words, and a write burst of 8
words. To simplify the model, there is no error management.

The class my_target inherit the class BaseModule, that is the basis for all TLM-T modules. The class my_target
contains a member variable p_vci of type VciTargetPort. This object has a template parameter <vci_param>
defining the widths of the VCI ADRESS & DATA fields.

D) VCI target modeling 4

D.1) Receiving a VCI command packet

To receive a VCI command packet, a call-back function must be defined as a member function of the class
my_target. This call-back function (named cmdReceived() in the example), will be executed each time a VCI
command packet is received on the p_vci port. The function name is not constrained, but the arguments must
respect the following prototype:

void cmdReceived(vci_cmd_t *cmd,
 uint32_t time)

For the read and write transactions, the actual data transfer is performed by this cmdReceived() function. To avoid
multiple data copies, only the pointer on the initiator data buffer is transported in the VCI command pacquet
(source buffer for a write transaction, or destination buffer for a read transaction).

D.2) Sending a VCI response packet

To send a VCI response packet the cmdReceived() function must use the rspSend() method, that is a member
function of the class VciTargetPort, and has the following prototype:

void rspSend(vci_rsp_t *cmd,
 uint32_t time)

For a reactive target, the response packet date is computed as the command packet date plus the target intrinsic
latency.

D.3) Target Constructor

The constructor of the class my_target must initialize all the member variables, including the p_vci port. The
cmdReceived() call-back function being executed in the context of the thread sending the command packet, a link
between the p_vci port and the call-back function must be established. The VciTargetPort constructor must be
called with the following arguments:

p_vci(?vci?, this, &my_initiator::cmdReceived)

D.4) VCI target example
template <typename vci_param>
class my_target : tlmt::BaseModule {
public:
 VciTargetPort<vci_param> p_vci;

 ////////////// constructor
 my_target (sc_module_name name,
 uint32_t targetIndex,
 uint32_t latency):
 p_vci(?vci?,this, &my_target::cmdReceived),
 tlmt::BaseModule(name)
 {
 m_latency = latency;
 m_index = targetIndex;
 } // end constructor

private:
 vci_param::data_t m_data[8]; // local buffer
 uint32_t m_latency; // target latency
 uint32_t m_index; // target index

D.1) Receiving a VCI command packet 5

 vci_rsp_t m_rsp; // paquet VCI réponse

 /////////////// call-back function
 sc_time cmdReceived(vci_cmd_t *cmd,
 uint32_t cmd_time)
 {
 if(cmd->cmd == VCI_CMD_WRITE) {
 for(int i = 0 ; i < length ; i++) m_data[i] = cmd->buf[i];
 }
 if(cmd->cmd == VCI_CMD_READ) {
 for(int i = 0 ; i < length ; i++) cmd->buf[i] = m_data[i];
 }
 m_rsp.srcid = cmd->srcid;
 m_rsp.trdid = cmd->trdid;
 m_rsp.pktid = cmd>pktid;
 m_rsp.length = cmd->length;
 m_rsp.error = 0;
 rsp_time = cmd_time + latency;
 p_vci.rspSend(&m_rsp, rsp_time) ;
 return (rsp_time + cmd->length);
 } // end cmdReceived()
} // end class my_target

E) VCI Interconnect
The VCI interconnect used for the TLM-T simulation is a generic simulation model, named VciVgmn. The two
main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to
reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the
network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled
as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts
can appear at any intermediate switch. In the VciVgmn network described in Figure 2.b, conflicts can only happen
at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical
interconnects, the general arbitration policy is round-robin.

E.1) Generic network modeling

There is actually two fully independent networks for VCI command packets and VCI response
packets. There is a routing function for each input port, and an arbitration function for each output
port, but the two networks are not symmetrical :

For the command network, the arbitration policy is distributed: there is one arbitration thread for each
output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a
SC_THREAD, and contain a local clock.

•

For the response network, there is no conflicts, and there is no need for arbitration. Therefore, there is no
thread (and no local time) and the response network is implemented by simple function calls.

•

This is illustrated in Figure 3 for a network with 2 initiators and three targets :

E.2) VCI initiators and targets synchronisations

As described in sections B & C, each VCI initiator TLM-T module contains a thread and a local clock. But, in order
to increase the TLM-T simulation speed, the VCI targets are generally described by reactive call-back functions.

E) VCI Interconnect 6

Therefore, there is no thread, and no local clock in the TLM-T module describing a VCI target. For a VCI target,
the local clock is actually the clock associated to the corresponding arbitration thread contained in the VciVgmn
module.

As described in Figure 4, when a VCI command packet - sent by the corresponding arbitration thread - is received
by a VCI target, two synchronization mechanisms are activated :

The cmdReceived() function sends a VCI response packet with a date to the source initiator, through the
VciVgmn response network. The corresponding date can be used to update the initiator local clock.

•

The cmdReceived() function returns a date to the arbitration thread. This date is used to update the
arbitration thread local time.

•

F) Interrupt modeling
Interrupts are asynchronous events that are not transported by the VCI network.

As illustrated in Figure 5, each interrupt line is modeled by a specific point to point, uni-directional channel. It use
two ports of type IrqOutPort and IrqinPort that must be declared as member variables of the source and
destination modules respectively.

F.1) Source modeling

The source module (named my_source in this example) must contain a member variable p_irq of type
IrqOutPort. To activate, or desactivate an interruption, the source module must use the irqSend() method, that is a
member function of the IrqOutPort class. Those interrupt packets transport both a Boolean, and a date. The
irqSend() prototype is defined as follows :

void irqSend(bool val, uint32_t time)

F.2) Destination modeling

The destination module (named here my_processor) must contain a member variable p_irq of type IrqInPortt,
and a call-back function (named here irqReceived() that is executed when an interrupt packet is received on the
p_irq port.

A link between the p_irq port and the call-back function mus be established by the port constructor in the
constructor of the class my_processor :

p_irq(?irq?, this, &my_processor::irqReceived)

In the Parallel Discrete Event Simulation, the pessimistic approach suppose that any PDES process is not allowed
to update his local time until he has received messages on all input ports with dates larger than his local time.

Therefore, a SC_THREAD modeling the behavior of a processor containing an IrqInPort should in principle wait
a dated packet on this interrupt port before executing instructions. Such behavior would be very inefficient, and
could create dead-lock situations.

The recommended policy for handling interrupts is the following:

F) Interrupt modeling 7

The call-back function irqReceived() sets the member variables m_irqpending and m_irqtime, when a
interrupt packet is received on the p_irq port.

•

The execLoop() thread must test the m_irqpending variable at each cycle (i.e. in each iteration of the
infinite loop).

•

If there is no interrupt pending, the thread continues execution. If an interrupt is pending, and the interrupt
date is larger than the local time, the thread continues execution. If the interrupt date is equal or smaller
than the local time, the interrupt is handled.

•

Such violation of the the pessimistic parallel simulation create a loss of accuracy on the interrupt handling date.
This inaccuracy in the TLM-T simulation is acceptable, as interrupts are asynchronous events, and the timing error
is bounded by the m_lookahead parameter.

F.3) Processor with interrupt example
class my_processor : tlmt::BaseModule {
public:
 IrqInPort p_irq;

 // constructor
 my_processor (sc_module_name name,
 uint32_t lookahead) :
 p_irq(?irq?, this, &my_initiator::irqReceived),
 m_time(0),
 tlmt::BaseModule(name)
 {
 m_lookahed = lookahead;
 m_counter = 0;
 m_irqset = false;
 SC_THREAD(execLoop);
} // end constructor

private:
 tlmt_time m_time; // local clock
 bool m_irqpendig; // pending interrupt request
 uint32_t m_irqtime; // irq date
 uint32_t m_counter; // iteration counter
 uint32_t m_lookahed; // lookahead value

 // thread
 void execLoop()
 {
 while(1) {
 ...
 // test interrupts
 if (m_irqpending && (m_irqtime <= m_time.getTime())) {
 // traitement interrupt
 }
 ...
 // lookahead management
 m_counter++ ;
 if (m_counter >= m_lookahead) {
 m_counter = 0 ;
 wait(SC_ZERO_TIME) ;
 } // end if
 m_time.addtime(1) ;
 } // end while
 } // end execLoop()

// call-back function
 void irqReceived(bool val, sc_time time)
 {
 m_irqpending = val;

F.2) Destination modeling 8

 m_irqtime = time;
 } // end irqReceived()
} // end class my_processor

F.3) Processor with interrupt example 9

