Writing efficient TLM-T SystemC simulation models
for SoCLib

Authors : Alain Greiner, Frangois Pécheux, Emmanuel Viaud, Nicolas Pouillon

1. A) Introduction
2. B) Single VCI initiator and single VCI target
3. C) Initiator Modeling
1. C.1) Sending a VCI command packet
2. C.2) Receiving a VCI response packet
3. C.3) Initiator Constructor
4. C.4) Lookahead parameter
5. C.5) TLM-T initiator example
4. D) Target Modeling
1. D.1) Receiving a VCI command packet
2. D.2) Sending a VCI response packet
3. D.3) Target Constructor
4. D4) TLM-T target example

A) Introduction

This document describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib. Those
rules enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the
simulation has is own, local time, and processes synchronize through timed messages. Models complying with
those rules can be used with the "standard" OSCI simulation engine (SystemC 2.x), but can be used also with others
simulation engines, especially distributed, parallelized simulation engines.

Besides you may also want to follow the general SoCLib rules.

B) Single VClI initiator and single VCI target

Figure 1 presents a minimal system containing one single initiator, and a single target. In the proposed example, the
initiator module doesn't contains any parallelism, and can be modeled by a single SC_THREAD, describing a
single PDES process. The activity of the my_initiator module is described by the SC_THREAD execLoop(), that
contain an infinite loop. The variable m_time represents the PDES process local time.

Contrary to the initiator, the target module has a purely reactive behaviour. There is no need to use a SC_THREAD
to describe the target behaviour : A simple method is enough.

The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated
uni-directionnal channels : one to transmit the VCI command packet, one to transmit the VCI response packet.

C) Initiator Modeling

In the proposed example, the initiator module is modeled by the my_initiator class. This class inherit the
BaseModule class, that is the basis for all TLM-T modules. As there is only one thread in this module, there is only
one member variable time of type tlmt_time. This object can be accessed through the getTime(), addTime() and
setTime() methods.

C) Initiator Modeling 1

The execLoop() method, describing the initiator activity must be declared as a member function of the
my_initiator class.

Finally, the class my_initiator must contain a member variable p_vci, of type VcilnitiatorPort. This object has a
template parameter <vci_param> defining the widths of the VCI ADRESS & DATA fields.

C.1) Sending a VCI command packet

To send a VCI command packet, the execLoop() method must use the cmdSend() method, that is a member
function of the p_vei port. The prototype is the following:

void cmdSend (vci_cmd_t *cmd, // VCI command packet
sc_time time); // initiator local time

The informations transported by a VCI command packet are defined below:

class vci_cmd_t {

vci_command_t cmd; // VCI transaction type

vci_address_t *address; // pointer to an array of addresses on the target side

uint32_t *be; // pointer to an array of byte_enable si
bool contig; // contiguous addresses (when true)

vci_data_t *buf; // pointer to the local buffer on the initiator
uint32_t length; // number of words in the packet

bool eop; // end of packet marker

uint32_t srcid; // SRCID VCI

uint32_t trdid; // TRDID VCI

uint32_t pktid; // PKTID VCI

}

The possible values for the emd fied are VCI_CMD_READ, VCI_CMD_WRITE, VCI_CMD_READLINKED,
and VCI_CMD_STORECONDITIONAL Le champ address contient un ensemble d?adresses valides dans 17espace
mémoire partagé du systeme modélisé. The contig field can be used for optimisation.

The emdSend() function is non-blocking. To implement a blocking transaction (such as a cache line read, where
the processor is blocked during the VCI transaction), the model designer must use the wait() method, that is a
member function of the VcilnitiatorPort class. The execLoop() thread is suspended; It will be activated when the
response packet is received by the notify() method, that is also a member function of the VcilnitiatorPort.

C.2) Receiving a VCI response packet
C.3) Initiator Constructor
C.4) Lookahead parameter

C.5) TLM-T initiator example

template <typename vci_param>
class my_initiator : Tlmt::BaseModule {
public:
VciInitiatorPort <vci_param> p_vci;

//////// constructor

my_initiator (sc_module_name name,
uint32_t initiatorIndex
uint32_t lookahead)

C.1) Sending a VCI command packet 2

p_vci(?vci?, this, &my_initiator::rspReceived, &m_time),
BaseModule (name),
m_time (0),

{

m_index = InitiatorIndex;
m_lookahed = lookahead;
m_counter = 0;

SC_THREAD (execLoop) ;
} // end constructor

private:
tlmt_Time m_time; // local clock
uint32_t m_index; // initiator index
uint32_t m_counter; // iteration counter
uint32_t m_lookahed; // lookahead value
vci_param::data_t m_data[8]; // local buffer
vei_cmd_t m_cmd; // paquet VCI commande

//////// thread
void execLoop ()
{
while (1) {
?
m_cmd.cmd = VCI_CMD_READ;
p_vci.cmdSend (&m_cmd, m_time.getTime()); // lecture bloquante
p_vci.wait ();
?
m_cmd.cmd = VCI_CMD_WRITE;
p_vci.send (VCI_CMD_WRITE, ?);
p_vci.cmdSend (&m_cmd, m_time.getTime()); // écriture non bloquante

// lookahead management
m_counter++ ;
if (m_counter >= m_lookahead) {

m_counter = 0 ;
wait (SC_ZERO_TIME) ;
} // end if

m_time.addtime (1) ;
} // end while
} // end execLoop ()

///1//7//7//7////// call-back function
void rspReceived(vci_cmd_t *cmd, sc_time rsp_time)
{
if (cmd == VCI_CMD_READ) {
m_time.set_time(rsp_time + length);
p_vci.notify () ;

}
} // end rspReceived()
} // end class my_initiator

D) Target Modeling

D.1) Receiving a VCI command packet
D.2) Sending a VCI response packet
D.3) Target Constructor

D) Target Modeling

D4) TLM-T target example

Cible TLM-T

template <typename vci_param>
class my_target : Tlmt::BaseModule {

public:
VciTargetPort<vci_param>
////////////// constructor
my_target (sc_module_name name,
uint32_t targetIndex,
sc_time latency) :

p_vci(?vci?,this, &my_target::cmdReceived),
BaseModule (name)

{

m_latency = latency;

m_index = targetIndex;

} // end constructor

private:
vci_param::data_t m_datal[8];
sc_time m_latency;
uint32_t m_index;
vci_rsp_t m_rsp;

/////////7////// call-back function
sc_time cmdReceived/(vci_cmd_t *cmd,
sc_time cmd_time)

{

if (cmd->cmd == VCI_CMD_WRITE) {

for(int 1 = 0 ; i < length ;

}
if (cmd->cmd == VCI_CMD_READ) {

for(int 1 = 0 ; i < length ;

}
m_rsp.srcid = cmd->srcid;
m_rsp.trdid = cmd->trdid;
m_rsp.pktid = cmd>pktid;
m_rsp.length = cmd->length;
m_rsp.error = 0;
rsp_time = cmd_time + latency;
p_vci.rspSend(&m_rsp, rsp_time) ;
return (rsp_time + (sc_time)cmd->length);
} // end cmdReceived/()

} // end class my_target

D4) TLM-T target example

p_vci;

// local buffer
// target latency
// target index

it+)

it+)

// paquet VCI réponse

m_datal[i] =

cmd->buf [i]

cmd->buf[i];

m_datalil]l;

