{{{ #!html

Writing TLM2.0-compliant timed SystemC simulation models for SoCLib

}}} Authors : Alain Greiner, François PĂȘcheux, Emmanuel Viaud, Nicolas Pouillon, Aline Vieira de Mello [[PageOutline]] = A) Introduction = This document is still under development. It describes the modeling rules for writing TLM-T SystemC simulation models for SoCLib that are compliant with the new TLM2.0 OSCI standard. These rules enforce the PDES (Parallel Discrete Event Simulation) principles. Each PDES process involved in the simulation has its own local time, and PDES processes synchronize through messages piggybacked with time information. Models complying to these rules can be used with the "standard" OSCI simulation engine (SystemC 2.x) and the TLM2.0 protocol, but can also be used also with others simulation engines, especially distributed, parallelized simulation engines. The interested user should also look at the [WritingRules/General general SoCLib rules]. = B) Single VCI initiator and single VCI target = Figure 1 presents a minimal system containing one single initiator, '''my_initiator''' , and one single target, '''my_target''' . The '''my_initiator''' module behavior is modeled by the SC_THREAD '''execLoop()''', that contains an infinite loop. The call-back function '''my_nb_transport_bw()''' is executed when a VCI response packet is received by the initiator module. [[Image(tlmt_figure_1.png, nolink)]] Unlike the initiator, the target module has a purely reactive behaviour and is therefore modeled as a call-back function. In other words, there is no need to use a SC_THREAD : The target behaviour is entirely described by the call-back function '''my_nb_transport_fw()''', that is executed when a VCI command packet is received by the target module. The VCI communication channel is a point-to-point bi-directionnal channel, encapsulating two separated uni-directionnal channels: one to transmit the VCI command packet, one to transmit the VCI response packet. = C) VCI initiator Modeling = In the proposed example, the initiator module is modeled by the '''my_initiator''' class. This class inherits from the SystemC '''sc_core::sc_module''' class, that acts as the root class for all TLM-T modules. The initiator local time is contained in a member variable named '''m_localTime''', of type '''sc_core::sc_time'''. The local time can be accessed through the use of the following accessors: '''addLocalTime()''', '''setLocalTime()''' and '''getLocalTime()'''. {{{ sc_core::sc_time m_localTime; // the initiator local time ... void addLocalTime(sc_core::sc_time t); // add a value to the local time void setLocalTime(sc_core::sc_time& t); // set the local time sc_core::sc_time getLocalTime(void); // get the local time }}} The initiator activity corresponds to the boolean member '''m_activity''' that indicates if the initiator is currently active (i.e. '''true''', wants to participate in the arbitration in the interconnect) or inactive (i.e. '''false''', does not want to participate in the arbitration in the interconnect). The corresponding access functions are '''setActivity()''' and '''getActivity()'''. {{{ bool m_activity; ... void setActivity(bool t); // set the activity status (true if the component is active) bool getActivity(void); // get the activity state }}} The '''execLoop()''' method, describing the initiator behaviour must be declared as a member function of the '''my_initiator''' class. Finally, the class '''my_initiator''' must contain a member variable '''p_vci_init''', of type '''tlmt_simple_initiator_socket'''. This member variable represents the VCI initiator port. It has 3 template parameters, two of which are used to help connecting the response callback function ('''my_initiator''' in the example, first template parameter) to the port and defining the port type ('''soclib_vci_types''' in the following example, third template parameter). '''soclib_vci_types''' is indeed a C++ structure containing two typedef: the first typedef defines the payload type as VCI, and the other defines the TLM phase type. The phase type can either be '''TLMT_CMD''' (i.e. the transaction indicates the emission of a command by an initiator and its reception by a target), '''TLMT_RSP''' (i.e. the transaction indicates the emission of a response by a target and its reception by an initiator), or '''TLMT_INFO''' (i.e. a TLM-T transaction emitted by one side of a link (vci, irq or fifo) to get information such as time and activity on the other side of the link). == C.1) Sending a VCI command packet == To send a VCI command packet, the '''execLoop()''' method must use the '''nb_transport_fw()''' method, that is a member function of the '''p_vci_init''' port. The prototype is the following: {{{ tlm::tlm_sync_enum nb_transport_fw /// sync status ( soclib_vci_types::vci_payload_type &payload, ///< VCI payload pointer soclib_vci_types::tlmt_phase_type &phase, ///< transaction phase sc_core::sc_time &time); ///< time }}} The first parameter of this member function is the VCI packet, the second represents the phase (TLMT_CMD in this case), and the third parameter contains the initiator local time. To prepare a VCI packet for sending, the '''execLoop''' function must declare two objects locally, '''payload''' and '''phase'''. {{{ soclib_vci_types::vci_payload_type payload; soclib_vci_types::tlmt_phase_type phase; }}} A payload of type '''soclib_vci_types::vci_payload_type''' corresponds to a '''tlmt_vci_transaction''' and thus contains three kinds of structure fields: TLM2.0 related fields,VCI related fields, and TLM-T related fields. The contents of a '''tlmt_transaction''' is defined below: {{{ class tlmt_vci_transaction { ... private: // TLM2.0 related fields and common structure sc_dt::uint64 m_address; // address unsigned char* m_data; // buf unsigned int m_length; // nword tlmt_response_status m_response_status; // rerror bool m_dmi; // nothing unsigned char* m_byte_enable; // be unsigned int m_byte_enable_length; unsigned int m_streaming_width; // // VCI related fields tlmt_command m_command; // cmd unsigned int m_src_id; // srcid unsigned int m_trd_id; // trdid unsigned int m_pkt_id; // pktid // TLM-T related fields bool* m_activity_ptr; sc_core::sc_time* m_local_time_ptr; }}} The TLM2.0 compliant accessors allow to set the TLM2.0 related fields, such as the transaction address, the byte enable array pointer and its associated size in bytes, and the data array pointer and its associated size in bytes. The byte enable array allows to build versatile packets thanks to a powerful but slow data masking scheme. Further experiments are currently done. It is likely that the types of the '''m_data''' and '''m_byte_enable''' of the '''tlmt_vci_transaction''' will be changed to '''uint32*''' in a near future. The VCI accessors are used to define the VCI transaction type, that can either be '''set_read()''' (for read command), '''set_write()''' (for write command),'''set_locked_read()''' (for atomic locked read), and '''set_store_cond()''' (for atomic store conditional). The '''set_src_id()''', '''set_trd_id()''' and '''set_pkt_id()''' functions respectively set the VCI source, thread and packet identifiers. {{{ payload.set_address(0x10000000);//ram 0 payload.set_byte_enable_ptr(byte_enable); payload.set_byte_enable_length(nbytes); payload.set_data_ptr(data); payload.set_data_length(nbytes); // 5 words of 32 bits payload.set_write(); payload.set_src_id(m_id); payload.set_trd_id(0); payload.set_pkt_id(pktid); phase= soclib::tlmt::TLMT_CMD; sendTime = getLocalTime(); p_vci_init->nb_transport_fw(payload, phase, sendTime); }}} The '''nb_transport_fw()''' function is non-blocking. To implement a blocking transaction (such as a cache line read, where the processor is ''frozen'' during the VCI transaction), the model designer must use the SystemC '''sc_core::wait(x)''' primitive ('''x''' being of type '''sc_core::sc_event'''): the '''execLoop()''' thread is then suspended, and will be reactivated when the response packet is actually received. == C.2) Receiving a VCI response packet == To receive a VCI response packet, a call-back function must be defined as a member function of the class '''my_initiator'''. This call-back function (named '''my_nb_transport_bw()''' in the example), must be declared in the '''my_initiator''' class and is executed each time a VCI response packet is received on the '''p_vci_init''' port. The function name is not constrained, but the arguments must respect the following prototype: {{{ tlm::tlm_sync_enum my_nb_transport_bw // for resp messages ( soclib_vci_types::vci_payload_type &payload, // payload soclib_vci_types::tlmt_phase_type &phase, // transaction phase sc_core::sc_time &time); // resp time }}} The function parameters are identical to those described in the forward transport function The actions executed by the call-back function depend on the response transaction type ('''m_command''' field), as well as the '''pktid''' and '''trdid''' fields. In the proposed example : * In case of of a blocking read , the call-back function updates the local time, and reactivates the suspended thread. * In case of a non-blocking write, the call-back function does nothing. == C.3) Initiator Constructor == The constructor of the class '''my_initiator''' must initialize all the member variables, including the '''p_vci_init''' port. The '''my_nb_transport_bw()''' call-back function being executed in the context of the thread sending the response packet, a link between the '''p_vci_init''' port and the call-back function must be established. The TLMT_INFO transaction allows the target to get information on the initiator that actually sends VCI packets (the initiator local time, the initiator activity, etc). The '''my_initiator''' constructor for the '''p_vci_init''' object must be called with the following arguments: {{{ p_vci_init.register_nb_transport_bw(this, &my_initiator::my_nb_transport_bw); }}} where '''my_nb_transport_bw''' is the name of the callback function == C.4) Lookahead parameter == The SystemC simulation engine behaves as a cooperative, non-preemptive multi-tasks system. Any thread in the system must stop execution after at some point, in order to allow the other threads to execute. With the proposed approach, a TLM-T initiator will never stop if it does not execute blocking communication (such as a processor that has all code and data in the L1 caches). To solve this issue, it is necessary to define -for each initiator module- a '''lookahead''' parameter. This parameter defines the maximum number of cycles that can be executed by the thread before it is automatically stopped. The '''lookahead''' parameter allows the system designer to bound the de-synchronization time interval between threads. A small value for this parameter results in a better timing accuracy for the simulation, but implies a larger number of context switches, and a slower simulation speed. == C.4) VCI initiator example == {{{ ////////////////////////// my_initiator.h //////////////////////////////// #ifndef __MY_INITIATOR_H__ #define __MY_INITIATOR_H__ #include "tlm.h" // TLM headers #include "tlmt_transactions.h" // VCI headers #include "tlmt_simple_initiator_socket.h" // VCI socket #include "mapping_table.h" class my_initiator // my_initiator : public sc_core::sc_module // inherit from SC module base class { private: //Variables typedef soclib::tlmt::VciParams vci_param; sc_core::sc_event m_rspEvent; sc_core::sc_time m_localTime; bool m_activity; uint32_t m_initid; uint32_t m_counter; uint32_t m_lookahead; ///////////////////////////////////////////////////////////////////////////////////// // Fuctions ///////////////////////////////////////////////////////////////////////////////////// void execLoop(void); // initiator thread void addLocalTime(sc_core::sc_time t); // add a value to the local time void setLocalTime(sc_core::sc_time& t); // set the local time sc_core::sc_time getLocalTime(void); // get the local time void setActivity(bool t); // set the activity status (true if the component is active) bool getActivity(void); // get the activity state ///////////////////////////////////////////////////////////////////////////////////// // Virtual Fuctions tlm::tlm_bw_transport_if (VCI INITIATOR SOCKET) ///////////////////////////////////////////////////////////////////////////////////// /// Receive rsp from target tlm::tlm_sync_enum my_nb_transport_bw // for resp messages ( soclib_vci_types::vci_payload_type &payload, // payload soclib_vci_types::tlmt_phase_type &phase, // transaction phase sc_core::sc_time &time); // resp time protected: SC_HAS_PROCESS(my_initiator); public: tlmt_simple_initiator_socket p_vci_init; // VCI initiator port //constructor my_initiator( // constructor sc_core::sc_module_name name, // module name const soclib::common::IntTab &index, // VCI initiator index const soclib::common::MappingTable &mt, // mapping table uint32_t lookahead // lookahead ); }; #endif /* __MY_INITIATOR_H__ */ ////////////////////////// my_initiator.cpp //////////////////////////////// #include "my_initiator.h" // Our header #ifndef MY_INITIATOR_DEBUG #define MY_INITIATOR_DEBUG 1 #endif #define tmpl(x) x my_initiator ///Constructor tmpl (/**/)::my_initiator ( sc_core::sc_module_name name, // module name const soclib::common::IntTab &index, // index of mapping table const soclib::common::MappingTable &mt, // mapping table uint32_t lookahead // lookahead ) : sc_module(name) // init module name , p_vci_init("p_vci_init") // vci initiator socket name { //register callback function p_vci_init.register_nb_transport_bw(this, &my_initiator::my_nb_transport_bw); // initiator identification m_initid = mt.indexForId(index); //lookahead control m_counter = 0; m_lookahead = lookahead; //initialize the local time m_localTime= 0 * UNIT_TIME; // initialize the activity variable setActivity(true); // register thread process SC_THREAD(execLoop); } ///////////////////////////////////////////////////////////////////////////////////// // Fuctions ///////////////////////////////////////////////////////////////////////////////////// tmpl (sc_core::sc_time)::getLocalTime() { return m_localTime; } tmpl (bool)::getActivity() { return m_activity; } tmpl (void)::setLocalTime(sc_core::sc_time &t) { m_localTime=t; } tmpl (void)::addLocalTime(sc_core::sc_time t) { m_localTime= m_localTime + t; } tmpl (void)::setActivity(bool t) { m_activity =t; } tmpl (void)::execLoop(void) // initiator thread { soclib_vci_types::vci_payload_type payload; soclib_vci_types::tlmt_phase_type phase; sc_core::sc_time sendTime; unsigned char data[32]; unsigned char byte_enable[32]; int pktid = 0; int nbytes = 4; // 1 word of 32 bits uint32_t int_data = 12345678; std::ostringstream name; name << "" << int_data; std::cout << "NAME = " << std::dec << name << std::endl; for(int i=0; i vci_param; uint32_t m_targetid; soclib::common::MappingTable m_mt; ///////////////////////////////////////////////////////////////////////////////////// // Virtual Fuctions tlm::tlm_fw_transport_if (VCI SOCKET) ///////////////////////////////////////////////////////////////////////////////////// // receive command from initiator tlm::tlm_sync_enum my_nb_transport_fw /// sync status ( soclib_vci_types::vci_payload_type &payload, ///< VCI payload pointer soclib_vci_types::tlmt_phase_type &phase, ///< transaction phase sc_core::sc_time &time); ///< time protected: SC_HAS_PROCESS(my_target); public: tlmt_simple_target_socket p_vci_target; ///< VCI target socket my_target(sc_core::sc_module_name name, const soclib::common::IntTab &index, const soclib::common::MappingTable &mt); ~my_target(); }; #endif ////////////////////////// my_target.cpp //////////////////////////////// #include "my_target.h" #ifndef MY_TARGET_DEBUG #define MY_TARGET_DEBUG 1 #endif #define tmpl(x) x my_target ////////////////////////////////////////////////////////////////////////////////////////// // CONSTRUCTOR ////////////////////////////////////////////////////////////////////////////////////////// tmpl(/**/)::my_target ( sc_core::sc_module_name name, const soclib::common::IntTab &index, const soclib::common::MappingTable &mt) : sc_module(name), m_mt(mt), p_vci_target("p_vci_target") { //register callback fuction p_vci_target.register_nb_transport_fw(this, &my_target::my_nb_transport_fw); m_id = m_mt.indexForId(index); } tmpl(/**/)::~my_target(){} ///////////////////////////////////////////////////////////////////////////////////// // Virtual Fuctions tlm::tlm_fw_transport_if VCI SOCKET ///////////////////////////////////////////////////////////////////////////////////// //nb_transport_fw implementation calls from initiators tmpl(tlm::tlm_sync_enum)::my_nb_transport_fw // non-blocking transport call through Bus ( soclib_vci_types::vci_payload_type &payload, // VCI payload pointer soclib_vci_types::tlmt_phase_type &phase, // transaction phase sc_core::sc_time &time) // time { int nwords = payload.get_data_length() / vci_param::nbytes; switch(payload.get_command()){ case soclib::tlmt::VCI_READ_COMMAND: case soclib::tlmt::VCI_WRITE_COMMAND: case soclib::tlmt::VCI_LOCKED_READ_COMMAND: case soclib::tlmt::VCI_STORE_COND_COMMAND: { #if MY_TARGET_DEBUG std::cout << "[RAM " << m_id << "] Receive from source " << payload.get_src_id() <<" a packet "<< payload.get_pkt_id() << " Time = " << time.value() << std::endl; #endif payload.set_response_status(soclib::tlmt::TLMT_OK_RESPONSE); phase = soclib::tlmt::TLMT_VCI_RSP; time = time + (nwords * UNIT_TIME); #if MY_TARGET_DEBUG std::cout << "[RAM " << m_id << "] Send to source "<< payload.get_src_id() << " a anwser packet " << payload.get_pkt_id() << " Time = " << time.value() << std::endl; #endif p_vci_target->nb_transport_bw(payload, phase, time); return tlm::TLM_COMPLETED; } break; default: break; } //send error message payload.set_response_status(soclib::tlmt::TLMT_ERROR_RESPONSE); phase = soclib::tlmt::TLMT_VCI_RSP; time = time + nwords * UNIT_TIME; #if MY_TARGET_DEBUG std::cout << "[RAM " << m_id << "] Address " << payload.get_address() << " does not match any segment " << std::endl; std::cout << "[RAM " << m_id << "] Send to source "<< payload.get_src_id() << " a error packet with time = " << time.value() << std::endl; #endif p_vci_target->nb_transport_bw(payload, phase, time); return tlm::TLM_COMPLETED; } }}} = E) VCI Interconnect = The VCI interconnect used for the TLM-T simulation is a generic simulation model, named '''!VciVgmn'''. The two main parameters are the number of initiators, and the number of targets. In TLM-T simulation, we don't want to reproduce the cycle-accurate behavior of a particular interconnect. We only want to simulate the contention in the network, when several VCI intitiators try to reach the same VCI target. Therefore, the network is actually modeled as a complete cross-bar : In a physical network such as the multi-stage network described in Figure 2.a, conflicts can appear at any intermediate switch. In the '''!VciVgmn''' network described in Figure 2.b, conflicts can only happen at the output ports. It is possible to specify a specific latency for each input/output couple. As in most physical interconnects, the general arbitration policy is round-robin. [[Image(tlmt_figure_2.png, nolink)]] == E.1) Generic network modeling == There is actually two fully independent networks for VCI command packets and VCI response packets. There is a routing function for each input port, and an arbitration function for each output port, but the two networks are not symmetrical : * For the command network, the arbitration policy is distributed: there is one arbitration thread for each output port (i.e. one arbitration thread for each VCI target). Each arbitration thread is modeled by a SC_THREAD, and contains a local clock. * For the response network, there are no conflicts, and there is no need for arbitration. Therefore, there is no thread (and no local time) and the response network is implemented by simple function calls. This is illustrated in Figure 3 for a network with 2 initiators and three targets : [[Image(tlmt_figure_3.png, nolink)]] == E.2) VCI initiators and targets synchronizations == As described in sections B & C, each VCI initiator TLM-T module contains a thread and a local clock. But, in order to increase the TLM-T simulation speed, the VCI targets are generally described as reactive call-back functions. Therefore, there is no thread, and no local clock in the TLM-T module describing a VCI target. For a VCI target, the local clock is actually the clock associated to the corresponding arbitration thread contained in the '''!VciVgmn''' module.