
SocLib Components General Index

UNDER DEVELOPMENT

ARM7TDMI Processor Functional Description
This hardware component is a ARM7TDMI processor core. This is only an ISS, which should be wrapped with an
IssWrapper.

The simulation model is actually an instruction set simulator with an ARM7TDMI pipeline.

Currently it only exists in bigendian form.

Component definition
Available in source:trunk/soclib/soclib/lib/arm7tdmi/metadata/arm7tdmi.sd

Usage

ARM7TDMI has no parameters.

Uses('iss_wrapper', iss_t = 'common:arm7tdmi')

Before compiling any SoClib simulator using the ARM7TDMI you will need to download the UNISIM
([http:\\www.unisim.org]) library (well, just a piece of it, the unisim_lib). To do so just download it using svn from
?https://unisim.org/svn/devel/unisim_lib with the following command:

svn import ?https://unisim.org/svn/devel/unisim_lib•

You will have to enter a username and password. If you do not have access to the UNISIM development, you can
simply use 'guest'/'guest' for username and password respectively. Once you have downloaded UNISIM you will
need to create a link in trunk/soclib/lib/arm7tdmi/include/iss/ and trunk/soclib/lib/arm7tdmi/src/iss/ to
<your_path_to_unisim_lib>/unisim.

If you wish you can download the full UNISIM library by downloading unisim_tools and unisim_simulators:

svn import ?https://unisim.org/svn/devel/unisim_tools•
svn import ?https://unisim.org/svn/devel/unisim_simulators•

ARM7TDMI Processor ISS Implementation
The implementation is in

source:trunk/soclib/lib/arm7tdmi/include/iss/arm7tdmi.h•
source:trunk/soclib/lib/arm7tdmi/src/iss/arm7tdmi.cpp•

The previous files use the ARM7TDMI implementation provided in the UNISIM library.

ARM7TDMI Processor ISS Implementation 1

https://unisim.org/svn/devel/unisim_lib
https://unisim.org/svn/devel/unisim_lib
https://unisim.org/svn/devel/unisim_tools
https://unisim.org/svn/devel/unisim_simulators

Template parameters

This component has no template parameters.

Constructor parameters
MipsElIss(
 sc_module_name name, // Instance Name
 int ident); // processor id

or

MipsEbIss(name, ident);

Visible registers

The following internal registers define the processor internal state, and can be inspected:

r_pc : Program counter•
m_ins : Instruction register•
r_gpr[i] : General registers (0 < i < 32)•
r_hi & r_lo : Intermediate registers for multiply / divide instructions•
r_cp0[i] : Coprocessor 0 registers (0<=i<32). Implemented values:

8: BAR : Bad address register♦
12: SR : Status register♦
13: CR : Cause register♦
14: EPC : Exception PC register♦
15: INFOS : CPU identification number on bits [9:0]♦

•

Interrupts

Mips defines 6 interrupts lines. Le lowest number has the hiest priority. The handling and prioritization of the
interrupts is deferred to software.

Ports

None, it is to the wrapper to provide them.

Template parameters 2

