
SocLib Components General Index

VciXcacheWrapper / VciVcacheWrapper /
VciCcXcacheWrapper / VciCcVcacheWrapper

1) Functional Description

These 4 hardware components are generic cache controllers, fully compliant with the VCI advanced protocol. They
can be used to interface any - single instruction issue - 32 bits RISC processor (such as Mips32, Sparc V8, Xilinx
microBlaze, Altera Nios, or PPC 405) to a VCI based multi-processor system. They act directly as a wrapper for
any ISS (Instruction Set Simulator) respecting the standardized API defined in
source:root/trunk/soclib/soclib/lib/iss2/include/iss2.h.

Each cache controller implements two separated instruction and data caches, sharing the same VCI interface.

The VciXcacheWrapper (in short Xcache) replace the previous VciXcache component. It has an higher
simulation speed, and supports associativity (for both the instruction and data caches).

•

The VciVcacheWrapper (in short Vcache) has the same functionnalities as the Xcache, and implements a
generic paged MMU (see below).

•

The VciCcacheWrapper (in short CC_Xcache) has the same functionnalities as the Xcache, and implement
a directory-based cache coherence protocol (see below).

•

The VciCcVcachewrapper supports both the generic MMU and the cache coherence.•

No Virtual memory With Virtual Memory
No Cache Coherence VciXcacheWrapper VciVcacheWrapper
With Cache Coherence VciCcXcacheWrapper VciCcVcacheWrapper

General features

The general characteristics are the following

The VCI DATA field must have 32 bits,•
The VCI ADDRESS field must have 32 bits (when there is no MMU),•
The VCI ERROR field has 1 bit.•
The number of lines must be a power of 2, and cannot be larger than 1024.•
The number of words must be a power of 2, and cannot be larger than 32.•
The number of associativity levels must be a power of 2, and cannot be larger than 16.•

According to the VCI advanced specification, these components use one word VCI command packets for Read
MISS, and accept one word VCI response packets for Write bursts. In order to garanty the memory consistency,
these cache controllers do NOT start a new VCI transaction until the previous transaction is completed. Therefore,
they do NOT use the VCI PKTID and TRDID fields.

Instruction Cache

It is read-only.•
It uses the Mapping Table to support uncached segments.•
In case of read MISS, or read uncached, the processor is stalled until the missing instruction is available.•
The only VCI transaction generated by the Instruction cache is a read burst corresponding to a missing
cache line.

•

VciXcacheWrapper / VciVcacheWrapper / VciCcXcacheWrapper / VciCcVcacheWrapper 1

Data Cache

The write policy is WRITE-THROUGH (the data is immediately written in memory, and the cache is
updated only in case of HIT).

•

The Data cache contains a write buffer, and builds a burst when there are successive write requests in the
same cache line.

•

It uses the Mapping Table to support uncached segments.•
The Data Cache supports the following requests : Read, Write, Linked load, and Store Conditional•
The Data cache accepts a line invalidate command.•
Three types of VCI transactions can be generated by the data cache:

read burst of fixed length, corresponding to a cached read MISS,♦
one word transaction, corresponding to an uncached read, a linked load, or a store conditional.♦
write burst of variable length (no larger than a cache line)♦

•

The processor is stalled in case of cached read MISS, in case of uncached read, or in case of write, if the
write buffer is full.

•

Generic MMU

The Vcache and CC_Vcache components implement a generic MMU, that can be used by all the single instruction
issue 32 bits processors available in the SoCLib platform. This MMU performs both the logical address to physical
address translation, and access rights checking.

The logical address is 32 bits.•
The Physical address is 36 bits (or less).•
It is implemented as a two level, hierarchical, page table.•
Both first & second level page table contains 1024 entries.•
Two page sizes are supported : 4 Kbytes, or 4 Mbytes.•
Two separated TLBs are iused for instruction and data addresses.•
The TLB misses are handled by hardware (hardwired table-walk).•
An execution context is defined by the value stored in the PTPR (Page Table Pointer Register).•
Any context switch flush both the instruction & data TLBs.•

The page page descriptor format is 32 bits:

ET Entry Type 2 bits
C Cachable 1 bit
W Writable 1 bit
X eXecutable 1 bit
U User 'access in user mode allowed 1 bit
G Global (not invalidate by TLB flush 1 bit
D Dirty (page has been modified) 1 bit
PPN Physical Page Number 24 bits
The generic MMU defines 10 registers, that can be accessed by the software ttrough the generic cache/proccessor
interface defined in source:root/trunk/soclib/soclib/lib/iss2/include/iss2.h

PTPR set Page Table Pointer Register Write
TLB_EN activates Data & Instruction TLBs Write
ICACHE_FLUSH flush Instruction Cache Write
DCACHE_FLUSH flush Data Cache Write
ITLB_INVAL Instruction TLB line invalidate Write

Data Cache 2

DTLB_INVAL Data TLB line invalidate Write
ICACHE_INVAL Instruction Cache line invalidate Write
DCACHE_INVAL Data Cache line invalidate Write
BAD_VADDR Bad Virtual Address Register Read
ERR_TYPE Exception type Register Read
In the Vcache and CC_Vcache components, the cachability (for both instruction & data accesses) can be defined by
software - on a per-logical-page basis) through the cacheability attribut contained in each page descriptor. But the
cachability can also be controlled (on a per-physical-segment basis) through the mapping table.

Cache Coherence

The CC_Xcache & CC_Vcache components implement a directory-based cache coherence protocol. The global
memory directory itself should be implemented in a dedicated memory controller such as the VciMemCache
component. The cache coherence protocol is strongly simplified by the WRITE-THROUGH policy and is
implemented by three types of packets. The CC_Xcache (or CC_Vcache) component has one VCI target port, and
can receive UPDATE or INVALIDATE packets, from the memory controller. When the CC-Xcache (or
CC_Vcache) component discard a cache line (due to a cache line replacement following a MISS), it signals this
change by a CLEANUP packet sent to the cache controller. All those coherence packets are implemented as VCI
write packets to dedicated memory mapped registers.

an UPDATE packet (memory controller to cache) has N+2 words : the first word contains the the line index
of the modified cache line. The second word contains the index of the first modified word in the line. The
N following words contain the N data values.

•

an INVALIDATE packet (memory controller to cache) has 1 word : it contains the line index of the
modified cache line.

•

a CLEANUP packet (cache to memory controller) has 1 word : it contains the line index of the discarded
cache line.

•

2) CABA Implementation

Xcache

Usage :
source:trunk/soclib/soclib/module/internal_component/vci_xcache_wrapper/caba/metadata/vci_xcache_wrapper.sd?

•

interface :
source:trunk/soclib/soclib/module/internal_component/vci_xcache_wrapper/caba/source/include/vci_xcache_wrapper.h?

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_xcache_wrapper/caba/source/src/vci_xcache_wrapper.cpp?

•

Vcache

Usage :
source:trunk/soclib/soclib/module/internal_component/vci_vcache_wrapper/caba/metadata/vci_vcache_wrapper.sd?

•

interface :
source:trunk/soclib/soclib/module/internal_component/vci_vcache_wrapper/caba/source/include/vci_vcache_wrapper.h?

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_vcache_wrapper/caba/source/src/vci_vcache_wrapper.cpp?

•

CC_Xcache

Usage :
source:trunk/soclib/soclib/module/internal_component/vci_cc_xcache_wrapper/caba/metadata/vci_cc_xcache_wrapper.sd

•

Generic MMU 3

interface :
source:trunk/soclib/soclib/module/internal_component/vci_cc_xcache_wrapper/caba/source/include/vci_cc_xcache_wrapper.h

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_cc_xcache_wrapper/caba/source/src/vci_cc_xcache_wrapper.cpp

•

CC_Vcache

Usage :
source:trunk/soclib/soclib/module/internal_component/vci_cc_vcache_wrapper/caba/metadata/vci_cc_vcache_wrapper.sd

•

interface :
source:trunk/soclib/soclib/module/internal_component/vci_cc_vcache_wrapper/caba/source/include/vci_cc_vcache_wrapper.h

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_cc_vcache_wrapper/caba/source/src/vci_cc_vcache_wrapper.cpp

•

CABA template parameters

All these 4 component have two template parameters, defining respectively the width of the various VCI signals,
and the instanciated ISS.

template<typename vci_param, typename iss_t>

CABA constructor parameters

Xcache

 VciXcacheWrapper(
 sc_module_name insname,
 int proc_id,
 const soclib::common::MappingTable &mt,
 const soclib::common::IntTab &index,
 size_t icache_lines,
 size_t icache_words,
 size_t icache_sets,
 size_t dcache_lines,
 size_t dcache_words
 size_t dcache_sets);

Vcache

 VciVcacheWrapper(
 sc_module_name insname,
 int proc_id,
 const soclib::common::MappingTable &mt,
 const soclib::common::IntTab &index,
 size_t itlb_m_ways,
 size_t itlb_m_sets,
 size_t itlb_k_ways,
 size_t itlb_k_sets,
 size_t dtlb_m_ways,
 size_t dtlb_m_sets,
 size_t dtlb_k_ways,
 size_t dtlb_k_sets,
 size_t page_m_nbits,
 size_t page_k_nbits,
 size_t icache_lines,
 size_t icache_words,
 size_t icache_sets,
 size_t dcache_lines,
 size_t dcache_words

2) CABA Implementation 4

 size_t dcache_sets);

CC_Xcache

 VciCcXcacheWrapper(
 sc_module_name insname,
 int proc_id,
 const soclib::common::MappingTable &mt,
 const soclib::common::IntTab &initiator_index,
 const soclib::common::IntTab &target_index,
 size_t icache_lines,
 size_t icache_words,
 size_t icache_sets,
 size_t dcache_lines,
 size_t dcache_words
 size_t dcache_sets);

CC_Vcache

 VciCcVcacheWrapper(
 sc_module_name insname,
 int proc_id,
 const soclib::common::MappingTable &mt,
 const soclib::common::IntTab &initiator_index,
 const soclib::common::IntTab &target_index,
 size_t itlb_m_ways,
 size_t itlb_m_sets,
 size_t itlb_k_ways,
 size_t itlb_k_sets,
 size_t dtlb_m_ways,
 size_t dtlb_m_sets,
 size_t dtlb_k_ways,
 size_t dtlb_k_sets,
 size_t page_m_nbits,
 size_t page_k_nbits,
 size_t icache_lines,
 size_t icache_words,
 size_t icache_sets,
 size_t dcache_lines,
 size_t dcache_words
 size_t dcache_sets);

CABA ports

sc_in<bool> p_resetn : Global system reset•
sc_in<bool> p_clk : Global system clock•
soclib::caba::VciInitiator<vci_param> p_vci : The VCI port•

3) TLM-T Implementation

interface :
source:trunk/soclib/soclib/module/internal_component/vci_xcache_wrapper/tlmt/source/include/vci_xcache_wrapper.h?

•

implementation :
source:trunk/soclib/soclib/module/internal_component/vci_xcache_wrapper/tlmt/source/src/vci_xcache_wrapper.cpp?

•

TLM-T template parameters

CABA constructor parameters 5

TLM-T constructor parameters

TLM-T ports

TLM-T constructor parameters 6

