Cosimulation using SoCLib components and RTL
models

You may use CABA models together with RTL models using ModelSim. This needs the following parts:

¢ a set of SystemC models

¢ a set of Verilog/VHDL models

e glue wrappers where needed, exporting a RTL model to SystemC or SystemC to RTL (scgenmod to export
RTL model to SystemC but this is not covered in this guide)

¢ a SystemC clock driver (we had some issues with vhdl clock driver), i.e. a module bagotting clock signal

SystemC modules are SoCLib ones and are usually compiled with SoCLib-cc. They come with pure-c++
dependancies which must be linked together with the modules.

Due to its simulator core design, ModelSim has to compile SystemC modules a special way, and has a dedicated
tool to compile SystemC/C++ files: sccom.

Soclib-cc has three main jobs:
® Select modules and dependancies from a platform description file,
¢ Explicitly instantiate C++ templates,

e Call the C++ compiler. Only this step is implemented in sccom.

The flow is as in the picture:

1]
soclib-cc handles most of this automagically if correctly configured. This guide explains how to set things up.

Moreover, the C/C++ only dependancies are not directly compileable with the dedicated ModelSim tool, but can be
injected at the last time, for the linkage phase (sccom -1ink).

How to configure SoCLib-cc to call ModelSim
compiler driver

Sometimes, the C++-only dependencies of SystemC modules need to Know about SystemC types. Therefore,
SystemC includes must be available.

soclib-cc needs new configuration sections for
¢ the compiler used by sccom
¢ the path to ModelSim's SystemC implementation
¢ used flags
¢ object file names pattern in sccom work directory
For all these, we must create 3 new configurations in soclib-cc's configuration file:
® a compiler

¢ a SystemC library
® 3 build environment

How to configure SoCLib-cc to call ModelSim compiler driver 1

Definition of the compiler used for ModelSim-usable SoCLib components.
We use sccom for components compilation and linkage, gcc/g++ for utilities
config.toolchain_sccom = Config(
base = config.toolchain,
Must use this.
tool_map = {
'SCCOM_CC':'sccom',
'SCCOM_CXX':'sccom',
'CC':'"/users/soft/mentor/modelsim-6.5c/modeltech/bin/gcc’,
'CXX':'/users/soft/mentor/modelsim-6.5c/modeltech/bin/g++"',
'CC_LINKER':'sccom',
'CXX_LINKER':'sccom',
}V
Modelsim cant do parallel builds :'(

max_processes = 1,

No cflags are needed, sccom forces them

cflags = ['-m32'],

Special features, it has a -link invocation needed at end...
libs = ['-1link'],

Definition of the ModelSim SystemC implementation. Must modify the

path according to the ModelSim current installation.

config.systemc_sccom = Config(
base = config.systemc,
This special vendor attributes enables some quirks in soclib-cc
vendor = 'sccom',
This is the path of the produced .o files when compiled with sccom.
You have to try it by hand, and adapt

sc_workpath = "work/_sc/linux_gcc—-4.1.2",
Mandatory quirks

dir = llll,

os = ""

libs = [],

cflags have to be deducted from actual invocation

Try using sccom -v by hand

cflags = ['-I/users/soft/mentor/modelsim-6.5c/modeltech/include/systemc’,
'-I/users/soft/mentor/modelsim-6.5c/modeltech/include'],

Definition of a new build environment, which can be referenced with 'soclib-cc -t'
config.sccom = Config(

base = config.build_env,

toolchain = config.toolchain_sccom,

systemc = config.systemc_sccom,

Where temporary files lies, beware that if you set a global path,

you'll need a mechanism to make user-unique directories.

repos = "/tmp/",

)

SystemC modules in ModelSim limitations

All modules that may be used from the outside of the SystemC-part (from RTL or from GUI) have to be declared
with a special macro (SC_MODULE_EXPORT).

There is no sc_main () function in modelsim-based simulators. The top module must be a sc_module with no
interfaces. This probably needs a rewrite of your netlists.

If you use DSX-generated netlists, this is done transparently.

SystemC modules in ModelSim limitations

Usage

Now we configured soclib-cc, we can compile a complete SystemC system.

Let's have an example system with two basic components communicating through a fifo.
0
We'll use

¢ SoCLib SystemC Fifo Ports,

¢ a VHDL fifo_gen component,

¢ a VHDL-SystemC fifo_gen_wrapper wrapper,
¢ a SystemC fifo_wrapper hosting a pure-C++.

This basic system has to be modeled as the following tree:
10
It contains:

fifo_gen
The VHDL component writing to the Fifo
fifo_gen_wrapper
The VHDL/SystemC wrapper to export £ifo_gen to the SystemC world
fifo reader
A SystemC component reading from the fifo
topcell
A SystemC component implementing the topcell
system_driver
A SystemC component controlling reset and clock signals

In order to simulate this system we need to:

® Reset the work directory, to make sure,

$ rm -rf work transcript modelsim.ini fifo_gen_wrapper/fifo_gen.h vsim.wlf
¢ Initialize modelsim work directory,

S vlib work
$ vmap work work

¢ Compile the VHDL module with vcom.

$ vcom fifo_gen/fifo_gen.vhd
® Generate the SystemC wrapper of the fi fo_gen VHDL module with scgenmod

$ scgenmod -sc_uint -bool fifo_gen > fifo_gen_wrapper/fifo_gen.h
¢ Compile the SystemC system driver with soclib-cc, all dependancies are pulled with it. . sd metadata are

needed (even for the VHDL/SystemC wrapper), see in tarball.

$ soclib-cc -1 caba:system _driver -t sccom -v -o sccom-link.o
¢ Open modelsim with the platform

$ vsim -novopt -sclib work system_driver

Usage

See the attached tarball for the complete example

Usage

