GDB Server for Soclib

The GdbServer class implements the soclib software debugger.

Overview

The GdbServer is able to manage all processors in a soclib platform. Once added to the platform netlist, it listens
for TCP connection from ?Gnu GDB clients. Once connected, clients can be used to freeze, run, step every
processor in the platform, add breakpoints, catch exceptions and dump registers and memory content.

Implementation

The GdbServer contains no processor specific code and can be used to manage any Soclib processor model using
the generic Iss interface. It is implemented as an Iss wrapper class. When the GdbServer is in use, it intercepts all
events between the processor Iss model and the Soclib platform. This enables the GdbServer to access platform
ressources as viewed from the processor without modifing platform components or procesor model source code.
The GdbServer is able to freeze the nested processor model while the platform is still running.

Usage

Adding GdbServer support to your platform

Adding the GdbServer to your topcell is easy. First include the header:

#include "gdbserver.h"

Then replace processor instantiation:

// Without GdbServer
// soclib::caba::IssWrapper<soclib::common: :MipsE1Iss> cpul ("cpuO", 0);
// With GdbServer
soclib: :caba::IssWrapper<soclib::common: :GdbServer<soclib::common: :MipsElIss> > cpu0 ("cpul",

Do not forget to update the platform description file:

Uses ('iss_wrapper', iss_t = 'common:gdb_iss', gdb_iss_t = 'common:mipsel'),

Connecting with a GDB client

When the simulation is running, the GDB Server listen for client connections on TCP port 2346.

$ ./system.x mutekh/kernel-soclib-mips.out

Its easy to connect to the simulation with a suitable gdb client:

$ mipsel-unknown-elf-gdb mutekh/kernel-soclib-mips.out

GNU gdb 6.7

Copyright (C) 2007 Free Software Foundation, Inc.

(gdb) target remote localhost:2346

Remote debugging using localhost:2346

0xe010cefd4d in cpu_atomic_bit_waitset (a=0x602002cc, n=<error type>) at /home/diaxen/projets/mute
99 {

GDB Server for Soclib 1


http://sourceware.org/gdb/

The processors are now frozen. Each processor is seen as a thread by the GDB client:

(gdb) info threads
4 Thread 4 (Processor mips_iss3) Oxe0l0ceec in cpu_atomic_bit_waitset (a=0x602002cc,
at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99

3 Thread 3 (Processor mips_iss2) 0xe010ce64 in lock_spin (lock=0x602002cc) at /home/diaxen/pr
2 Thread 2 (Processor mips_issl) 0xe010d110 in gpct_lock_ HEXO_SPIN_unlock (lock=0x602061e8)
* 1 Thread 1 (Processor mips_1issO0) 0xe010cef4 in cpu_atomic_bit_waitset (a=0x602002cc,

at /home/diaxen/projets/mutekh/cpu/mips/include/cpu/hexo/atomic.h:99

Classical GDB debugging session takes place. Here is a register dump of the processor O (thread 1):

(gdb) info registers

zero at v0 vl al al az a3
RO 00000000 0O000Off00 00000001 00000000 60200338 00000001 00000000 e010e74c
t0 tl t2 t3 t4 t5 to t7
R8 e010ef54 00000000 00000000 00000000 00000000 00000000 00000000 602021dc
s0 sl s2 s3 s4 s5 s6 s7
R16 00000000 00000000 00000000 00000000 00000000 00000000 0OOOO0O0O0O 000O0OCOOOO
t8 t9 k0 k1l gp sp s8 ra
R24 00000000 00000000 00000000 602007fc 60207ff0 60205ce8 60205ce8 0101134

sr lo hi bad cause pc

0000f£f00 00000000 00000000 00000000 00000000 e010117c

fsr fir

00000000 00000000

More informations on using the GDB client can be found on the ?The GNU Project Debugger home page.

Connecting with a GDB client


http://sourceware.org/gdb/

